City Creek Nature Notes – Salt Lake City

August 21, 2017

July 1st; Revised, Reposted

Talking Plants – Part I – Hidden Scents, Hidden Networks

Revised to include plants talking to each other by subsurface common mycorrhizal networks.

2:00 p.m. In the heat of the afternoon, it is another butterfly day. Cabbage white and Western tiger swallowtail butterflies line the road. Families stroll through the heat on a holiday weekend.

It is also the time of mature trees. The giant trees of the canyon – those taller than seventy-feet – now dominate the canyon experience. Species include Box Elder trees, Rocky Mountain narrowleaf cottonwood trees and Freemont’s cottonwood trees (Populus fremontii). They now provide a partial canyon that protects the mid- to small-sized trees and the understory bushes from the harsh summer sun. Walking past one of these biological skyscrapers, one can feel the increase in humidity from their exhalations. In winter, their skeletons are ignored and when walking up-canyon during the cold season, one does not give them a passing thought.

At Guardhouse Gate, Black-headed grosbeaks and Lazuli buntings dominate. At picnic site 3, Song sparrows are prominent, and at third active zone of birds appears at milepost 1.1.

At seep below picnic site 6, the Starry solomon’s seal has, in seemingly a few days, been overrun by Western poison ivy (Toxicodendron rydbergii). It is now a deep green, and in the fall will turn a deep red (Sept. 23rd).

* * * *

Per Thoreau’s “Journal” on July 1st, 1852, he notes that rabbit’s foot clover is turning colorful, mulleins are turning yellow, wild roses are at their peak. He describes a white lily in depth. He hears a red-eye, oven-bird and a yellow-throat. On July 1st, 1854, he again notes that the edges of distant objects are distinct in clear air. He watches the shadows of clouds moving across the land. On July 1st, 1859, he notes white ranunculus is in bloom.

* * * *

Plants communicate with each other and with insects by volatile airborne chemical signals in order to coordinate defenses against herbivores (Hartley 2010, Hartley 2009, Alba 2012, Engelberth 2012, Heil and Karbon 2009, see Witzany and Baluska (ed) 2012). Experiments suggest that Box Elder trees, the Gambel’s oaks, the bushes of the understory, the Curly dock weeds, the Starry Solomon plants, the sagebrush, and the other plants currently active in the canyon are carrying on a conversation, unheard by human interlopers. Experiments have been done on plants outside species of the Gambel’s oak forest, but one example exists for communication between the sagebrush groves along east Bonneville Drive. In 2011, Shiojiri at Kyoto University, Karban at University of California at Davis and Ishizaki at Hokkaido University replicated and expanded Karban’s 2006 study on Great basin sagebrush (Artemisia tridentata) plant communication (Shiojiri, Karban and Ishizaki 2011). They found that the neighbors of sagebrush plants mechanically damaged with scissors but allowed to spread VOCs suffered less damage from grasshoppers than sagebrush plants not allowed to receive VOC emissions from the damage sagebrush. In short, sagebrush plants talk with their sagebrush neighbors and warn them to start producing insecticides to ward off grasshoppers. In 2008, Mäntylä et al at the University of Bristol demonstrated that birch trees issue volatile airborne chemicals, not detectable by humans, when attacked by caterpillars. To control scents, they contained some damaged branches in plastic bags, but left other branches exposed. Birds preferentially visited and attacked branches where trees’ VOC scent was present. In short, their Great Britain birches talk to birds. Although the specific species in investigated in Great Britain are not present in the canyon, the canyon hosts Birchleaf mountain mahogany (Cercocarpus montanus Raf.). In 2011, Mäntylä et al demonstrated a similar effect in Scottish pines (Mäntylä et al 2011). Engelberth notes that some plants use VOCs to signal predatory insects, e.g. predatory wasps, that they have been damaged by insect herbivores that are preferred foods of the predator insect (Engelberth 2012).

Plant species talking between themselves, with other species of plants, and with insects and birds may have arisen by conferring an evolutionary advantage (Heil and Karban 2010). By alerting its same-specie and inter-specie neighbors, sagebrush, for example, can create a herd-like resistance to grasshopper attacks. Similarly, by talking with insects and birds, plants create co-evolutionary relationships that benefit both the plant and associated insect eating birds (id., Engelberth 2012). Through 2010, Heil and Karban summarize known examples of plant “talking” with VOCs (id). In this Great Basin canyon, such communication has only been shown specifically for Great basin sagebrush, but Heil and Karban also list known plant VOC demonstrations for families of plants whose cousins are also present in the City Creek Canyon, including willow trees, sugar maples, poplar trees and alder trees. That the other trees and other plants present in City Creek Canyon are talking to a each other seems a reasonable extrapolation, but demonstration of their VOC communication remains to be shown by future researchers.

Trees also may be talking with each via networks of fungi that permeates the soil beneath the trees. That tree roots make complex associations with fungi has been known for many years (Lanner, pp. 98-100), but with respect to canyon and Wasatch Front Mountain Range trees, this has only be studied extensively with respect to Douglas firs (Pseudotsuga menziesii), and even then, studies were performed principally in Washington State. When trees and fungi form associations, they are called mycorrhiza, and such associations are broken down into two parts. First, when fungi merge with interior of a root, they are termed arbuscular mycorrhizal fungi (AMF), and second, when fungi form fungal mats underneath and around the roots, they are termed ectomycorrhizal fungi (EMF). When AM or EM fungi connect between trees, they form a common mycorrhizal network (CMN). There can be more than 200 species of fungi that participate in arbuscular mycorrhizal association with a single plant. In this symbiotic relationship, fungi, for example with respect to Douglas firs, release additional nutrients from the soil that increases the firs’ ability to grow (Cline 2004), and conversely, the trees manufacture and provide unique nutrients to the fungi that they cannot obtain from the soil such as glucose. Thus, although trees can grow without an AMF or EMF, they grow slower and with less vitality (Cline). The CMN is formed by long hypae, or narrow primitive vascular tubes – that are characteristic of fungi. AMF or EMF associations occur in 80 percent of terrestrial plants.

A recent hypothesis suggest that the common mycorrhizal network of AMFs that provide a pathway by which chemical information is exchanged between trees (Barto et al 2012). Under this hypothesis, plants coordinate their defense against insects and disease using the CMN, and experimentally, this has been shown to occur in AMFs for three invasive grasses (id). Gorzelak and colleagues at the University of British Columbia extended this theory to EMFs (Gorzelak et al 2015). Once again, new modern biochemical and genetic analysis techniques provide insights into the complex life of seemingly simple trees. In 2015, Song and colleagues found in British Columbian forests where they artificially defoliated Douglas firs chemically signaled Ponderosa pine (Pinus ponderosa) through the EMF-CMN. The pines responded by issuing stress chemicals. Thus, two different species of trees “talked” with each other over a fungal network.

Both Douglas firs and Pondersa pine are found in the Wasatch Front Mountain Range generally, but not in the canyon specifically. Given that eighty-percent of species and over ninety-percent of families of pldants form AMF and EMF associations, many of the other unstudied trees with AMFs and EMFs in the canyon, like the oaks and maples, may also be talking between themselves over fungal networks. But this is supposition, a “just so” story, and confirmation of whether the canyon’s trees along the first road mile awaits future research by biologists.

* * * *

On July 1st, 2001, City Planning Director Stephen Goldsmith notes that a gate has been added at Memory Grove to control traffic (Salt Lake Tribune). On July 1st, 1997, a small grass fire broke out near Memory Grove (Salt Lake Tribune). On July 1st, 1925, a Salt Lake Telegram editorial approved of the City’s use of “hoboes, drunkards and indolent men” on the prison road work crew then working in City Creek Canyon. On July 1st, 1920, twenty-five service men convalescing at St. Marks Hospital will be given a picnic outing in City Creek Canyon (Salt Lake Herald). On July 1st, 1919, a Salt Lake Telegram editorial reported that a large fire had been burning in City Creek for several days (Salt Lake Telegram). The Telegram reported rumors that the fire may have been started by I.W.W. members (id). (Famed I.W.W. organizer Joe Hill had been previously executed in Salt Lake City in November 1915.)

Advertisements

July 28, 2017

July 16th Revised, Reposted

Bird dialects; Grasshoppers and Locusts

2:30 p.m. With the continuing heat, an inverted layer of polluted air continues to building in valley, but the pollution has not yet entered the canyon. Today, the canyon air is clear, but later in the summer, the inversion layer will rise in altitude. A small black and white “bee” hover next to the road, but on closer inspection, it is a fly – Sacken’s bee hunter (Laphria sackeni). I find a small stink-bug like insect on several plants. It is a 3mm dark grey diamond with a orange-yellow border. It is probably a member of the Bordered plant bug (Largidae family), but I can find no specific specie example in my guides. Another dead Grasshopper (Melanoplus sp.) is on the road, and the continuing seasonal heat removes other characters from late spring’s cast. Yellow sweet clover has lost its leaves and become dried green sticks. Pinacate beetles have not been seen for a week.

Fruits betray infrequent lower canyon plants. On the trail spur leading from the road up to the Pipeline Trail, there is a single lower-canyon example of a dwarf Mountain ash (Sorbus scopulina) with bright red-fruit. Near mile 0.2, one Western blue elderberry bush (Sambucus nigra ssp. cerulea) sports deep blue fruit.

I have continued self-study on learning to read the bird soundscape of the canyon (May 6th), but I have become disillusioned with my reference recordings of bird songs. It is evident that the canyon’s birds use calls that not among my reference recordings, and I suspect between some unrelated species that the birds are imitating each other’s calls. I have followed another of the many Lazuli buntings in the lower canyon today, and they use a trill call that is not in my sample recordings. Like birds, the several species of grasshoppers that frequent Utah are difficult for amateurs to distinguish, because they are mostly are seen only during flight before they disappear into thick grass.

* * * *

Birds form regional dialects (Podos and Warren 2007, Luther and Baptista 2010). A consequence of this is that without amateurs building a large centralized body of recordings, no one reference audio will sufficient for a local area. Only long experience, in which visual observations can be paired with local dialectal calls, can make one a “wizard” of the local bird soundscape.

Grasshoppers are often confused by North American lay people, including myself, for a variety of insects, including katydids and locusts. The Mormon crickets (Anabrus simplex H.) of that religion’s 1848 “Miracle of the Gulls” (Nov. 30th) were katydids and not crickets. In addition to katydids and grasshopper outbreaks that continue to the present day, historically, Salt Lake City was also visited by many locust plagues. There are several species of grasshoppers in Utah. The principal kinds are Melanoplus confusus Scudder, Melanoplus packardii Scudder, Melanoplus sanguinipes Fabricius, Camnula pellucida Scudder, and Aulocara elliotti Thomas (Watson 2016).

Salt Lake City and Utah were one of many regions that were devastated by the Rocky Mountain Locust outbreaks of the nineteenth century. Between the 1855 and 1900, the Plains states of North and South Dakota, Nebraska, Iowa and Missouri, and the Intermountain States (Colorado, Wyoming, southeastern Idaho and Utah) were inundated with periodic plagues of this mega-pest locust. In one June 1875 stream seen crossing the Nebraska plains, a swarm of 3.5 trillion locusts were seen (Lockwood, 19-21), and on the shores of the Great Salt Lake, drifts six feet high and two miles long, or 1.5 million bushels, were reported by Orson Pratt (Lockwood, 10; Deseret News May 25, 1875). The volume of the Salt Lake 1855 locusts were sufficient to cover four and one-third of Salt Lake City’s ten acre blocks with a one foot layer, or about 507 Salt Lake City ten acre blocks, or 0.8 square miles, one-inch deep (id). While the exact population of Rocky Mountain Locusts at their peak is unknown, one carrying capacity estimate for the western and plains lands puts the maximum 1875 Rocky Mountain Locust population at 15 trillion insects (Lockwood, 163-164). In terms of biomass, the Rocky Mountain Locusts of 1875 weighed in at an estimated of 8.5 million tons, and this compared favorably to the estimated 11.5 million tons of the 45 million North American bison of that same time. Nebraska, Minnesota, Iowa and Missouri were particularly hard hit by the 1875 locust outbreak, and those states and the federal government had to reluctantly implement large scale relief programs to aid bankrupted and starving farmers who had moved to those states and taken up undeveloped farm lands under the Homestead Act (Lockwood, Chap. 5).

The crisis lead to a governors’ commission, the creation of the United States Entomological Commission headed by prominent entomologists Charles V. Riley, Cyrus Thomas, and Alpheus Spring Packard, Jr. to study the insects, and the Entomological Commission issuing several classic nineteenth century scientific reports (Riley 1877, Packard 1877, United States Entomological Commission 1878 and 1880). Figure 1 of the Commission’s 1878 First Report elegantly shows the migration patterns of the Rocky Mountain locusts from their permanent nesting zones somewhere in the foothills leading to Yellowstone National Park in northwestern Wyoming and their circular migrations west and south to Utah and north and east through the Great Plains. Key among the Commission’s findings were that the Rocky Mountain locusts had a permanent nesting zone and within that zone, they preferred a particular type of sandy soil in which to reproduce.

The impact of Rocky Mountain Locust invasions were also substantial in Salt Lake City and Utah. In May 26, 1875, Wilford Woodruff, church apostle and then president of the Deseret Agriculture and Manufacturing Society noted that significant locust “grasshopper” infestations occurred in Utah in 1855 and during each year from 1866 to 1872. The 1855 invasion was the worst. Packard reported that in 1855, about 75 percent of all food stuffs were devoured, and this required the Utah settlers to live on thistles, milkweed and roots (Packard, 603-604). Heber C. Kimball estimated that there was less than fifty acres of standing grain left in the Salt Lake Valley and that the desolation stretched from Box Elder county to Cedar City (Bitton, Davis, and Wilcox, 342-343). The 1855 outbreak was part of a larger outbreak that covered present day Nevada, Utah, New Mexico, parts of Texas, and the eastern slopes of the Rocky Mountains (Packard, 34). The 1855 outbreak was followed by one of the worst winters in Utah history, the winter of 1850. 1850 marked the end of the 1300-1850 Little Ice Age. In the 1850s, one Salt Lake child described dunes of dead locusts along the Great Salt Lake shoreline as high as houses (Church of Jesus Christ of Latter Day Saints 1986). In June 1868, Alfred Cordon reported crossing a locust stream while traveling north of Salt Lake City for four miles, and in Tooele, an 1870 resident described the destruction of all of his crops (Bitton, Davis and Wilcox, 338).

As the Rocky Mountain Locust hordes passed, they would lay eggs in favorable sandy soils, such as those found in the foothills above Salt Lake City. In August 1879, Taylor Heninger and John Ivie of Sanpete County estimated that Rocky Mountain Locusts had laid 743,424,000 eggs on each acre (Bitton, Davis, and Wilcox, 344). On August 28th and 29th, 1878, the Entomological Commission’s Packard witnessed a few locusts hatching from the benches above Salt Lake City (e.g. including the present day Avenues foothills) for a radius of ten miles (Packard 1880 at Second Report, 1880, 69-70).

Through 1896, further outbreaks occurred, but the locust population continually diminished in size through the Plains and the Intermountain states (Bitton, Davis, and Wilcox, Table; United States Entomological Commission 1880). Without explanation, by the early 1900s, the Rocky Mountain Locusts disappeared, and by 1931, it was considered extinct (Lockwood, 128-136). That made the North American continent the only continent, excluding cold Antarctica, that is free of locusts. In 2012, a locust outbreak destroyed part of Russia’s wheat crop, resulting in that country halting wheat exports, and another Russian outbreak occurred in 2015. Curiously, since there were some many of the locusts, adequate specimens were not preserved in the United States’ academic insect collections.

Various theories arose between the early 1900s and the 1950s concerning why the Rocky Mountain Locusts became extinct (Lockwood, Chap. 10). Lockwood reviews why each was discarded in turn: The end of the Little Ice Age in 1890 and the decimation of the bison populations occurred after, not before the locust outbreaks. The decline of the rate of fires associated with the decline of Native American populations was rejected because Native Americans did not burn a sufficiently large part of the Great Plains. In another theory, the Rocky Mountain Locust (Melanopus spretus) in response to the planting of alfalfa by farmers phase transformed into another grasshopper that still exists today – the Migratory grasshopper (Melanopus sanguinipes). This was rejected because the number of alfalfa fields planted in the Great Plains was insufficient to deny the Rocky Mountain Locusts of their preferred food sources (id).

In order to obtain further evidence regarding this last theory, in the 1980s, Lockwood and colleagues searched glaciers in Idaho, Wyoming and Montana for Rocky Mountain Locusts that had been preserved. Eventually, frozen locusts were located in Idaho’s Sawtooth Mountains and at Knife Point Glacier in Wyoming. Subsequent taxonomic comparision confirmed that the Rocky Mountain Locust (Melanopus spretus) and Migratory grasshopper (Melanopus sanguinipes) are two distinct species (Lockwood, Chap.s 10 and 11). Genetic testing in part confirms that conclusion (Chapco and Litzenberger 2004).

Then what caused the extinction of the Rocky Mountain Locust – the mega-pest of the nineteenth century? Lockwood suggests that the permanent breeding zones of the Rocky Mountain Locust were similar to the Monarch butterfly (Lockwood, Chap. 13). The Monarch butterfly overwinters in a few small forest groves in California and Mexico. The Monarchs (of which I saw two of in City Creek Canyon on July 24th) could easily be made extinct by a few loggers armed with chain saws. The Rocky Mountain Locusts concentrate their favored breeding zones on sandy soils in foothills raised above stream banks. Lockwood suggests that a triumvirate of three human activities brought the end to the locusts. First, farmers in Wyoming or Montana flooded, as suggested by the Entomological Commission in 1880 (Second Report, 311-313, Utah irrigation practices), or farmed the relatively small permanent breeding refuges of the Rocky Mountain Locust. Farmers also planted alfalfa for cattle feed, a plant disfavored by the locusts. Second, ranchers released millions of cattle that quickly denuded sandy grasslands next to streams and canyon headwaters. Third, this led to cloud-burst flooding that washed out the breeding areas and-or covered breeding zones with layers of thick mud. Combined, these factors destroyed the Rocky Mountain Locusts permanent breeding refuges and led to their extinction.

These factors were also seen locally in the Salt Lake Valley. On their arrival, Euro-American colonists found a valley inundated with Rocky Mountain Locusts and kaytdids (March 6th). Their first tasks included forming a committee of extermination to kill much of the bird life in the valley that might eat agricultural crops and that incidentally eat locusts (March 6th). They then released some of the 4,500 cattle brought with the first 1848 settlers on both the valley floor and the foothills, and planted large tracks of grains on the valley floor. Next they began lumbering operations that denuded the upper canyons (March 13th and March 14th), and removal of the time resulted in cloudburst flooding (March 11th and 12th, July 7th) (id).

In modern Utah, outbreaks of less robust katydids and other grasshoppers still occur. On May 7, 2002, former Governor Micheal Leavitt declared a state of emergency in Utah due to an outbreak of Mormon crickets and other grasshoppers in which 3.3 million acres in Utah were infested (Ut. Exec. Order May, 7, 2002, Karrass 2001). Grasshoppers periodically infest up to 6 square miles in the Salt Lake valley, but their cousins, the Mormon cricket (Anabrus simplex H.), had their last 2 square mile outbreak in 2009 (id). Statewide, grasshoppers peaked in 2001 (1.4 million infested acres) and 2010 (approx. 800,000 acres) (Watson 2016, Karrass 2001). Acres infested by Mormon crickets crashed from 3 million in 2004 to only 10,000 in 2016 (Watson).In Salt Lake County, the last Mormon cricket infestation was about 1,300 acres in 2009 (Watson 2016). Given the rapid urbanization of the west half of the Salt Lake valley beginning in 2008, the katydids’ breeding ground on the valley floor has been further reduced, and thus, it is unlikely that they will return here. On July 16th and after their hatching, I saw four Mormon crickets in the trees around mile 0.5 in City Creek Canyon.

This does not mean that the ecological niche occupied by the Rocky Mountain Locust and the Mormon crickets remains empty. On July 6th, I estimated that in the foothills surrounding the north end of Salt Lake City – these are the same hills that Packard saw Rocky Mountain Locusts rise from in 1879 – there were 310,000,000 million House crickets (Acheta domestica) with a mass of 85 tons on the city’s northern foothills. Unlike the larger Utah grasshoppers and katydids, the House crickets do not invade the valley floor, and they are not perceived as a pest despite their numbers.

Mormons have a cultural tradition of storing one year’s worth of food against hard times. This practice has a thin doctrinal basis. There is an ambiguous reference in their texts directing members to “organize yourself; prepare every needful thing, and establish a house . . . ” (Smith, Doctrine and Covenants, 109:8), but a more direct religious source is Levicitus, Chapter 25:1-13, of the Christian Bible. In Levicitus, followers are enjoined to observe a fallow seventh sabbath year after six years of harvests. The fifty year after seventh sabbath years is to be a jubilee year in which debts are forgiven.

In present day Mormon country from Idaho to Arizona, selling and buying a year’s worth of dried disaster supplies is big business. Probably, this cultural practice is an echo of western colonists’ encounters with the now extinct Rocky Mountain Locust (Melanopus spretus). Numerous plague scale invasions of this locust visited Salt Lake City between 1855 and 1877.

The outbreak of 1855 was seven years after the 1848 “Miracle of the Gulls” katydid incident. On July 13, 1855, church apostle Heber C. Kimball drew the parallel between biblical injunctions in Leviticus to allow land to lay fallow every seven years and the need to store food stuffs to tide a believer over the seventh Sabbath year:

“How many times have you been told to store up your wheat against the hard times that are coming upon the nations of the earth? When we first came to the valley our President [Brigham Young] told us to lay up stores of all kinds of grain, that the earth might rest . . . This is the seventh year, did you ever think of it?” (quoted in Lockwood, 44-45).

After touring the devastation of the 1868 locust outbreak in the Salt Lake valley, Brigham Young in a sermon to the Mill Creek congregation returned to the need to keep a seventh sabbath year of provisions on hand as a hedge against calamity:

“We have had our fields laden with grain for years; and if we had been so disposed, our bins might have been filled to overflowing, and with seven years’ provisions on hand we might have disregarded the ravages of these insects, . . .” (quoted Bitton, Davis, and Wilcox, 354).

Thus, the Mormon practice of storing a year’s worth of food supplies is in part inspired by their encounter with the extinct Rocky Mountain Locust.

* * * *

On July 16th, 1946, the Salt Lake Telegram reported on the costs of recovery from an August 1945 cloudburst flood. The airport was wrecked and a flash flood down Perry’s Hollow ripped through the city cemetery and tombstones were swept onto N Street. The downtown flooded:

Two hours later [after the cloudburst] State St. was still blocked by the overflow from flooding City Creek. Boulders weighing 300 and 500 pounds were left along the way. Parked automobiles were carried for blocks. Tree branches and trash cans were left in four and five-foot drifts.

On July 16th, 1940, a young bicyclist lost control of his machine and was injured on crashing into a tree (Salt Lake Telegram). On July 16th, 1922, hundreds of young girls hiked up City Creek Canyon as part of a city parks recreation program (Salt Lake Telegram). On July 16th, 1916, the YMCA planned a hike up City Creek Canyon (Salt Lake Telegram). On July 16th, 1891, District Court Judge Zane in Duncan v. E. R. Clute declared the City’s water main improvement district that developed the City Creek water system infrastructure to be unlawful and he suggested that the City Council should be impeached for implementing their plan (Deseret Evening News). On July 16th, 1882, Salt Lake City passed an ordinance establishing the Salt Lake City Waterworks for the development of water system infrastructure in the city and in City Creek Canyon (Salt Lake Herald). The ordinance set a schedule of connection fees to City water mains (id).

July 13, 2017

July 12th

Latter Saint Day Conservation

7:30 p.m. Today, I go for a short jog up to the seep below picnic site 6 and then back down the Pipeline Trail. The successive days of summer heat is transforming the canyon. The tips of some Gambel’s oaks begin to curl and turn brown, and Starry solomon’s seal on the dry side of the road below picnic site 3 have curled up and turned brown. The road divides plants that are dry verses water tolerant. On the wet stream side of the road, Scouring rush horsetails line the stream. On the bank of the dry side of the road, Spikerushes have grown up to four feet in height. Herbaceous plants along the first one-third of road mile have turned from green to yellow-green. The Foxglove beardtongues are the only flowering plants that seem to grow more vigorously in this dryness and heat. Hidden near the stream, yellow-flowered Goldenrod plants (Solidago spp. L. or Solidago canadensis) grow three feet tall. Near mile 0.6, a new grove of yellow Toad flax (also called Butter-and-eggs) blooms out of its spring season in a microclimate of a shaded-cleft of the stream’s bottom. Yellow, the color of warm sun, is the color of this season.

It is the time of grasses. Along the road are the tall and slender Bluebunch wheatgrass (Pseudoroegneria spicata), fuller-headed Blue wild rye (Elymus glaucus), and open-headed Wild bunchgrass. The smaller roadside Foxtail barley (Hordeum jubatum L.) weeds begin to turn brown. At the seep below picnic site 6, there are Bulrushes (Schoenoplectus (Rchb.) Palla spp.), a sedge like marsh grass with large round heads, and the delicate bunchgrass Indian ricegrass (Achnatherum hymenoides). All have turned brown, and multiple shades of brown are the other color of this season.

At the seep below picnic site 6, the six foot tall Cattails have gone to seed and they start to turn brown from the top of the green cigar-shaped female pistillate down towards the pistillate’s base. The male spikes above the pistillates are flush with pollen. Blue Chicory and blue Common California aster (Aster chilensis a.k.a. Symphyotrichum chilensis) are also found in the seep.

Turning back towards the City and down the Pipeline Trail, young Lazuli buntings call in the fading light from the oaks and while perched on the powerline above the trail. Underneath the dwarf Gambel’s oaks, the subshrub Creeping Oregon grape (Mahona repens) grows with its pale blue fruit. Somehow, I missed its yellow flowers during the spring. Just down trail from Oregon grapes on dry exposed soil, a 50 by 20 foot patch of cylindrical green immature Broom snakeweed bushes (Gutierrezia sarothrae) is responding to bright, hot days. They will expose their yellow flowers in a few weeks.

Overhead, high linear clouds turn bright pink as the sun sets and the sky darkens.

* * * *

Mormons have super-majority voting control in the Mormon corridor – roughly an area three hundred miles on either side of a line running from Coreur d’Alene, Idaho on the north, through Salt Lake City, and then to Scottsdale, Arizona on the south. In the Utah portion of the corridor about sixty-six percent of voters identify with the L.D.S. Church. Mormons pride themselves on a tradition of conservation and foreword-thinking urban planning. As evidence of that cultural tradition, they site the early cooperative efforts of the Euro-American colonists of 1847 in cooperatively building irrigation ditches when the valley was settled (Galli 2006, Alexander 2006). Salt Lake City’s long-standing water manager, LeRoy Hooten, Jr., credited church leader Brigham Young with preserving the City Creek Canyon watershed with early, far-seeing water pollution laws (Hooten 1986). The early settlers laid out Salt Lake City in a grid pattern based on a vision of the City of Zion by their first prophet, Joseph Smith. This Mormon tradition of stewardship has a basis in their religious teachings (Galli 2006, Alexander 2006). Their teachings extoll that “the Lord, should make every man accountable, as a steward over earthly blessings” and that eventually, a divine creator will require “every man may give an account unto me of the stewardship” (Doctrine and Covenants, sections 104:12-13; Galli 2006). Brigham Young University history professor Thomas Alexander describes how Brigham Young and early church leaders taught mixture of religious conservation with entrepreneurship. Church members were expected to pursue a business life and to development natural resources while preserving and enhancing a divinely provided trust of the natural life (Alexander 2006).

This cultural tradition reappears periodically in Utah political dialog. Local attorney and former head of the Bureau of Land Management under President Clinton, Patrick Shea, often alludes to it. In supporting President Clinton’s declaration of the Grand Escalante Staircase National Monument, Shea claimed that Brigham Young declared “City Creek Canyon off-limits to logging, mining or any activities that could pollute the creek or harm the environmental refuge next to the growing city” (Salt Lake Tribune Oct. 6, 1996). Shea has also been active in preserving City Creek Canyon and in supporting the construction of the Bonneville Shoreline Trail that crosses the canyon (Salt Lake Tribune, May 7, 1997). In 2015, he opposed the Mountain Accord, a private proposal to limit development in the Wasatch Front Mountain Range canyons on the grounds that it did not provide enough protection, citing Brigham Young’s historical precedent of sustainable use in City Creek Canyon (Salt Lake Tribune March 21, 2015). The Mormon tradition is cited by Utah free-market proponents as a justification to transfer all federal lands to state control. Because of their dominate Mormon religion, Utahans will be good stewards of any newly received lands, it is claims.

Although Mormons talk environmental values, their conduct is little different from aggressive commercial exploitation of the natural environment (Flores 1985). Brigham Young engaged in heavy of logging that denuded much of the first growth forest in the City Creek Canyon (see entries March 21st through March 25th). His lumber operations in City Creek was an important component of Young’s personal and early church wealth (March 25th, April 4th). Water pollution controls and modern water infrastructure in City Creek Canyon were enacted after the non-Mormon Liberal Party and “Gentile” Mayor Richard Baskin first took control of Salt Lake City government in the 1890s, after Young’s death (Feb. 6th). Even after non-Mormons took control of city government, they allowed extensive mining in City Creek canyon through 1920 (March 26th). Hull noted the contradiction between the rise of Utah forest conservation in the early 1900s that stopped the over-harvesting of timber and the concurrent unabated overgrazing of rangelands (Hull 1976). But Hall’s research answers his own question. He noted that Bancroft (1890) reported that by grazing for free on public lands, early Mormon ranchers realized gross margins of 40 percent on sheep and of 84 percent on cattle. Because of simple greed by 1900, early Utah ranchers denuded the rangeland by overgrazing, and then through the 1930s, they continued practices that allowed invasive cheat grass to cover the state (July 7th).

Another disturbing aspect of fringe Mormon environmental beliefs, not discussed by Alexander or other Mormon scholars, relates to Armageddon or “end-days” theology. My own personal experience with a few Mormons, admittedly a non-representative sample from lower income classes, is that they believe that environmental protection is not necessary because the degradation of the Earth is a symptom of biblical end times. They candidly state that there is no need to preserve resources because after the end-time, a divine creator will provide the religious post-Armageddon few with a brand new earth, free of pollution and restocked with natural resources. One historian has also noted this cultural phenomena (Flores, 173-174).

Alexander’s response to critics of Mormon stewardship of Utah lands is that church leaders can only extol their members to conform to its religious teachings (Alexander 2006). Their secular actions are no different than the followers of the modern environmental movement, such as Deep Ecology, where the actual commercial practices of individuals may deviate from doctrinal ideals (id). A modern example might be subscribing to the Sierra Club magazine while opting to purchase a Humvee instead of a Prius. In this respect, I agree with Alexander: the environmental behavior of historical and modern Utah Mormons is not exceptional or different from their secular consumer counterparts. But those LDS conservation traditions and religious teachings provide a useful reminder that can be employed to counter the environmental excesses of the Mormon controlled Utah state government and local private industry.

* * * *

On July 12th, 1916, the YMCA led an outing of boys up City Creek Canyon (Salt Lake Tribune). On July 12th, 1906, City Creek Canyon was closed to fishing because the stream had been fished out, and the Fisherman’s Protective Association was working to re-stock the stream (Deseret Evening News). On July 12th, 1905, City Mayor Hewlett signed a resolution approving construction of a bridge across City Creek Canyon (Salt Lake Tribune, Salt Lake Telegram). This is probably the bridge were the stream crosses present day Bonneville Drive. On July 12th, 1890, plans for a 120 foot high wooden bridge across City Creek Canyon at Ninth Avenue were obtained by E. L. Craw (Salt Lake Times). On July 12th, 1899, John W. Snell reported assaying high quality lead, silver and gold ore eight miles up City Creek Canyon, and the Red Bird Mine is still producing (Ogden Standard).

July 11, 2017

July 6th

Dry Fork Canyon

3:45 p.m. It is the third day of 100 degree Fahrenheit heat as I return to the Bonneville Shoreline Trail behind the University of Utah Hospital. I plan to jog up Dry Fork Canyon at the southeast end of the Salt Lake salient and then west along the Shoreline Trail above the Avenues. The Trails goes up Dry Fork for about one mile, crosses a pass, and then traverses a series of gullies that come down from the ridgeline to the Avenues and city below. The Trail begins in a invasive Cheat grass sea that is typical of the city’s foothills. Here, small light brown House crickets (Acheta domestica), another non-native, infest the Cheat grass. There are twenty or thirty per square yard. I round a corner into Dry Fork Canyon, and quickly its narrow walls close in and shade the canyon. The Fork’s walls are covered in dense Gambel’s oak forest, and this forest broken higher up by fields of the brown sun-dried husks of Arrowleaf balsamroot (Balsamorhiza sagittata). In an example of color adaptation, at the base of the oaks, larger, unidentified grasshoppers live, but unlike the sun-exposed crickets, these are colored green in order to better blend in with their surroundings.

At a seep one-third of a mile up canyon, there is a mini-oasis. In ten feet with Wood’s rose bushes on either side, Common sulphur butterflies, Western tiger swallowtail butterflies, small bluet dragonflies, Common whitetail dragonflies, Western Yellowjacket wasps, and Circumpolar bluets, all compete for space and landing rights around a small ditch of shallow water.

Further up canyon, the oak forest comes alive with sounds of birds: Black-headed grosbeaks, Lazuli buntings and Song sparrows call from the oaks spaced perhaps 100 feet apart on both canyon walls. Their songs are clear and strong, and I estimate there are about 250 birds between the canyon mouth and the upper pass. Unexpectedly, this density exceeds that of the stream areas in City Creek Canyon. The birds here, unlike in the City Creek Canyon, are fearless. I am able to stand only five feet from a Lazuli bunting as it tilts its head back to make a song. I am able to make a good recording and spectral graph. I flush two California quails (Callipepla californica) from the brush.

House crickets may explain the high density of birds in Dry Fork Canyon, where as the name implies, there is no water. Assuming a cricket weighs about one-quarter gram (0.000551 lbs), then there are about 85 tons of cricket mass on the city facing foothills between Dry Fork Canyon and the peak at the top of North Terrace Hills Drive in Valley View Canyon (see June 10th) (3,097,600 square yards per square mile x 4 miles x 1.25 miles x 20 cricket per square yard x 0.000551 lbs. per cricket divided by 2,000 lbs. per ton). The crickets exist at a similar density for another ten square miles between Memory Grove in lower City Creek Canyon and milepost 3.5 above Bonneville Drive. This suggests that there may be about 300 tons of these non-native crickets, and this is more than enough to support the summer bird populations seen in Dry Fork and City Creek Canyon.

As the canyon dries out, purple Bull thistles (Cirsium vulgare) covered with small black ants, a blue-white thin-petaled Eaton’s aster (Aster eatonii a.k.a. Symphyotrichum eatonii), and invasive blue Chicory (Cichorium intybus L.) grow. The roots of Chicory are roasted and ground to make chicory coffee. The white-topped weed Hoary cress (Cardaria draba) is also found.

As I near the upper Trail pass out of Dry Fork, I count two Broad-tailed hummingbirds, and just before the pass, I am treated to a rare display by a pair of Black-chinned hummingbirds (Archilochus alexandri). The male has trapped a female hummingbird at the base of Gambel’s oak sapling. For several minutes the male does its pendulum mating dance. It rapidly flies back and forth in a figure-eight pattern about six feet across, its wings buzzing loudly. Then the male gives up, and he does two high speed runs over the female while making a zinging noise. At the pass out of Dry Fork, I am greeted by expansive views of the city and of the Great Salt Lake, fifteen miles in the distance. The Sun is pounding, but my spirit soars from both the views and the hummingbird’s display.

* * * *

Per Thoreau’s “Journal” on July 6th, 1851, he walks by moonlight and again sees it reflected in water. He notes crickets sing with a different frequency at night. On July 6th, 1852, he hears a pewee and a red-eye. He sees tufted vetch, a fern, a tansey, and a parsnip. He watches a pickerel in a stream. He hears a duck on a pond. On July 6th, 1856, he stumbles on a peet-weet with its nest and young. On July 6th, 1858, he hears and sees loons. On July 6th, 1859, he describes heart-leaf.

* * * *

On July 6th, 1905, the City passed Councilperson’s Woods proposed ordinance banned automobiles from City Creek Canyon. On the same day, the Salt Lake Tribune urged that the road should be sprinkled with oil to keep dust down. Also on July 6th, 1905, the City Council held a heated debate on whether a bridge should be constructed over City Creek Road in support of the Commercial Club’s proposed scenic boulevard (Salt Lake Tribune).

June 23, 2017

June 21st

Growth Spurts

6:45 p.m. In the cool of the late evening, I jog towards Pleasant Valley at mile 1.2. A Lazuli bunting (Passerina amoena) perches near the gate. Near mile 0.3, a flash of bright yellow on the outside of a tree catches the eye. It is a Yellow warbler (Dendroica petechia). At mile 1.1, I mistake plaintive calls for raptor chicks, but it is only the squawking of a pair of Western scrub jays (Aphelocoma californica).

The summer-like heat turns flowering plants. The leaves of Wild carrots (Lomatium dissectum), a.k.a. Fernleaf biscuitroot, are browning, and their seeds are turning a light purple. Curly dock weeds (Rumex crispus) have turned a deep brown. I admire Curly dock. It grows, flowers, and dies over only for a few weeks in the spring, but then its rich brown color accents the canyon throughout the rest of the year. Only in the early spring, does it finally succumb to winter’s weather, and then in a few weeks, it begins to regrow. Even the seeds of yesterday’s Milkweed have turned from a light green to a subtle purple in a single day. Foxglove beardtongues (Penstemon digitalis) that have delicate bell-like flowers have deepened in color from white to streaked pink.

Other plants respond to this initial summer heat with a growth spurt. Starry solomon’s seal plants (Maianthemum stellatum) have reached almost two feet in height. At the seep below picnic site 6, watercress (Nasturtium officinale) has grown four inches in height in just a few days. Scouring rush horsetails (Equisetum hyemale) along the road stand erect and have also reached two feet in height. At lower Pleasant Valley field, Wild bunchgrass (Poa secunda) is two to two and one-half feet high. Heat drives this rush.

Hovering other the Pleasant Valley field, a fleet of twenty Common whitetail dragonflies dart back and forth and play tag in the evening breeze. Their miniature relatives, Circumpolar bluets (Enallagma cyanigerum) line the first mile roadside. Returning down-canyon, a Pinacate beetle (Tenebrionidae eleodes) is running down the road. This is the first time that I have seen one fast motion, and usually they standing with their abdomens pointed into the air and ready to launch a chemical spray on predators. When running, its oversized rear legs make its large black abdomen comically waive back and forth. Since cars are banned from the canyon today, many bicyclists streak by not heeding caution for speed.

* * * *

Per Thoreau’s “Journal” on June 21st, 1852, he notes that adder’s tongue, a fern, smells like snakes. He hears a cherry bird. He sees a field with snap-dragon and he notes that lupines have lost their blooms. He hears thunder when there are no clouds in the sky. He collects morning glories. On June 21st, 1854, he notes the many smells in the air, including may-flowers and cherry bark. He compares how a stream bank has grown from a low covering of brown in spring to a thicket of weeds in summer. He finds a small pond with two pout fish and a brood of small fry. He describes a sprout forest – a forest of small sprouts that grows from fallen trees. He sees wild roses. On June 21st, 1856, he sees night hawks, and on June 21st, 1860, he observes pine pollen covering the surface of water.

* * * *

On June 21st, 2000, Mayor Rocky Anderson held a press conference urging Congress to pass a bill that would designate a portion of offshore federal oil revenues to fund improvements in local parks like City Creek Canyon (Salt Lake Tribune). On June 21st, 1995, Rotary Club members repainted benches at Rotary Park in City Creek Canyon (Salt Lake Tribune). On June 21st, 1994, a 19 year-old man was robbed at knife point by his passenger after they drove to City Creek Canyon (Salt Lake Tribune). On June 21st, 1934, Street Commissioner Harold B. Lee referred a proposal by former City Engineer S. Q. Cannon to employ road crews to widen City Creek Canyon Road to the Depression Federal Emergency Recovery Act Bureau (Salt Lake Telegram). On June 21st, 1912, City Parks Commissioner George D. Keyser proposed a circular scenic boulevard be created up City Creek, along 11th Avenue to Fort Douglas, then to Sugarhouse, and then returning to the City’s center (Salt Lake Tribune, Salt Lake Telegram). The route would be lined with trees (id). On June 21st, 1906, City Engineer Kelsey reported that 100 miles of sidewalks will be completed in the City this year and another 25 miles of roads will be paved or graveled (Salt Lake Telegram). A minor $1,000 project will construct a bridge in City Creek Canyon (id).

June 14, 2017

June 7th

Clicking Katydids

4:30 p.m. This is the fifth day of ninety degree temperatures, and I go for a short jog up to milepost 0.5 and back down the Pipeline Trail. Looking at the jet stream charts at the California Regional Weather Service and National Weather Service maps for the last few days, the jet stream has broken and disconnected over much of the western and central continental United States. A large high pressure zone has disrupted spring’s conveyor belt of cooling ocean air.

Going up canyon near mile 0.4, I check one of the blue paint mosquito tree holes, and inside is a one inch beetle that is colored with Frank Lloyd Wright’s bright Cherokee red. (Later, after checking my insect guides, I am unable to identify it.) Just past the turn-off from the road to the trail, I begin to hear an odd clicking sound coming from the trees, and I stop the Gambel’s oak grove mid-way between road and Pipeline Trail. The sound is all around, but I cannot see its cause. There are also some small birds in the trees that confuse the source, but after a few minutes, I notice two or three insects on the branches that look like a large cricket but they have clear wings. These may be annual Mountain or Canadian cicadas (Okanagana canadensis). They are most probably Mormon crickets, which are katydids and not crickets. Katydids come into two forms: annual hatching and the more famous periodic hatching that rise from the ground once every 17 years. I cannot get close enough to identify these tree dwellers with certainty. I suspect that since they are newly hatched, their wings are still too soft to make the loud clicking sounds.

Along the Pipeline Trail, the blossom heads of Arrowleaf balsamroot plants that recently dominated the hillsides (April 29th) are all dried husks and full of seeds. The hot Sun has done more of its work. Along the road, the Western salisfy first seen a week ago (June 2nd) along the road, have exploded into a showy ball of white tufted seed.

Along the powerline, an American robin, a Lazuli bunting, a Song sparrow, and a Black-headed grosbeak, all rest in the afternoon sunlight singing loudly. There are several more buntings replying on the western hillside. Further down trail near mile 0.2, two more grosbeaks call from the oaks, and this corresponds to the position where they are heard when along the road.

* * * *

In Thoreau’s “Journal” on June 7th, 1853 he records red clover, buttercups, cinquefoil, blueberries, and huckleberries. He hears quail and sees an oven bird and a night-hawk in its nest. On June 7th, 1854, he notes large sized green berries, blueberries, and choke-cherries. He hears honey bees. He sees a yellow-winged sparrow, a night-hawk, and the first fire-flies of the season. On June 7th, 1858, he observes that wind blowing across grass silences crickets. On June 7th, 1860, white clover has bloomed and he again hears honey-bees.

* * * *

In a June 7th, 2005 letter to the editors of the Salt Lake Tribune, Chuck Tabaracci related the saving of his dog after it had been swept away in the high waters of the canyon’s stream (Salt Lake Tribune). Two women lept into the stream to save the dog and where also swept downstream. All were saved and one woman suffered hypothermia and the second a concussion. Tabaracci also noted that people walking up the road refused to help the women and eventually they were transported to LDS Hospital by ambulance. On June 7th, 1913, the Commercial Club in a report, opposed building a highway up City Creek to connect with Morgan County (Salt Lake Tribune). On June 7th, 1893, City Council President Loofbourow proposed banning all of the new bicycles from the City (Deseret Evening News). He stated that, “I would encourage a movement to send them (all the bicycles) to the head of City Creek canyon and keep them there, as they are an intolerable nuisance” (id). A June 7th, 1887 Salt Lake Herald editorial proposed a system of reservoirs in City Creek Canyon in order to solve a shortage in the City’s water supply.

June 13, 2017

June 2nd

Evolution of Angiosperms

8:00 a.m. Some days are beyond beauty. This is the first official day of the five months in which cars are allowed in the canyon on alternating days, and I have decided to drive up to the end of the road to jog the uppermost canyon. It rained last night, the undergrowth and trees are all covered with thick layer of drops. As I drive up the road, the morning birds are active. With the windows open, I mentally tabulate a count as I slowly travel up the winding road. It comes to about 20 birds within earshot for every quarter mile. This suggests a population of some 800 smaller song birds along the five and three-quarters of paved road and the subsequent 2 miles of trail in a band for 50 yards on either side of the road.

Continuing the drive up canyon, Wild roses are open to Pleasant Valley, mile 1.1, and Wild geraniums are open to mile 5.0. Along the first mile, a new flowering plant, another weed, has sprung up to two feet tall seemingly overnight. It is Western salisfy (Asteraceae tragopogon dupon). Although a noxious invader, it is an admirable plant. To avoid the heat of the day, it folds closed into a pen-like tip, but now in the light morning sun, it shows sixteen thin yellow petals surrounded by hair-thin sepals. The center has a sharply contrasting black band. It lines the roadside and at Pleasant Valley, Utah Conservation Corps treated field, that removed yellow starthistle, is now covered with another invasive – salsify. A purple variant of this plant is also found along the first mile road.

At the water treatment plant at mile 3.4, the canyon narrows, and flashes of blue and black flittering into the Gambel’s oaks reveals a flock of Stellar’s jays. Stellar’s jays prefer the coolness of a montane habitat, and in contrast, their cousins, the Scrub jay, prefers the hotter lower canyon. But the Stellar’s jay is more territorial, and thus, more entertaining. When a hiker enters their territory, one will immediately swoop down to the trail and call with its repetitive “caw” in both curiosity and in complaint. The action of one will others of its tribe, and this provides the walker with an avian presidio under which one must pass inspection. Later in the afternoon, further up the trail at the end of the road, as I walk under a large moss covered log, a Stellar’s jay lands above me, its mouth full of moss intended for use as nesting material. It glances back for a quick inquisitive look and then proceeds on its business.

Resuming the drive up the road and as the walls of the canyon close in, the canyon transitions from Gambel oak forest to deciduous maple and Box elder tree forest. The road becomes a single track. The heavy moisture on the leaves is heated by the first penetrating morning sun, and as a result, the air is thick with mist and dew. Shafts of light peak make it through the dense overgrowth and illuminate the mist into yellow tubes. Here, the canyon feels most like an eastern forest. Although the dense greenery only extends for a few hundred yards on either side of the road, the narrow canyon walls cut off any vistas, and this is what I remember of my boyhood eastern forests. The green goes on forever and the all sense of direction is lost. Here, stream bed widens and the stream slows. But then, near mile 4.5, there is an abrupt transition to a Rocky Mountain forest (Peet 2000) dominated by Douglas fir and Norway spruce. The stream narrows and the stream bed becomes boulders that are angular and freshly honed from bedrock. This change is also announced by great vertically upended limestone fins on the western wall of the canyon that have been turned by earthquake faults (Sept 1st). The Wild geraniums thin out, and the first Mountain bluebells, a cool weather plant, appear and become more frequent. The air thickens more and forest becomes medieval.

Along this stretch of road between Lower and Upper Rotary Park, the bird communities, mostly of American robins, Song sparrows, Warbling vireos, and Black-headed grosbeaks are spread out into distinct communities, unlike in the warmer first mile canyon. The distinct trill call of a community of Chirping sparrows is heard. I also hear a lone Mountain chickadee calling. This is where they have come, since the lower canyon is too hot for them. This segregation of birds into unique groups along the road gives me the opportunity to stop and study the distinct songs and calls of a group of Warbling vireos.

The sun rises further and the mist burns off as I reach the end of the road at mile 5.75, and the old mining road and trail that leads to the Treasure Box mine begins. I have not been here since the end of last summer (Sept. 8th), and it feels restorative to be in the most natural of the canyon’s regions. Leaving the car and proceeding up the trail, where the direct sun penetrates, a green canopy of maples and box elders closes in, while on shaded eastern slope, Douglas firs reach to trails edge. The air is heavy with the smell of wet leaves and chlorophyll. Crossing the first and second red metal bridges affords views up the stream, and it is a torrent of white, with only hints of blue water. The stream has become a silver ribbon. After the third metal bridge, the trail rises, the canopy deepens and the undergrowth becomes impenetrable. This stretch is as the lower canyon appeared around 1900. Shipler’s photograph of the lower canyon road taken around 1903, appears nearly identical to this morning’s rise in the trail (J. Willard Marriott, Id. 459448, see also Salt Lake Tribune, May 24, 1903). The chirping call of a Green-tailed towhee is heard.

For the next half-mile, the trail is about 150 feet east of stream, and the trail consists of sharp rocks that a month ago were another snow-feed branch of the stream. Geraniums and blue bells thicken along with young stinging nettle plants. All are so covered with last night’s rain water that my shoes quickly become soaked, but I do not care. A Mourning cloak butterfly with an odd color variant flies down canyon. Instead of the yellow-white trailing band, its trailing wing band is a dusky orange. Other now common butterflies appear uniformly distributed along the trail: Western tiger swallowtails and newly-hatched smaller Spring azure butterfly butterflies. The Spring azures flock in groups of three to six, and the harsh high-altitude light brings out a new property to their colors. Depending on the sun angle, their wings flash a deep medium blue, their streaked light blue, or flat light blue. The deep blue is new variation to their iridescence. There is a new unidentified one and one-half inch butterfly. It has forewings of patterned medium dark grey and rear-wings that are a grayish black. The colder air at this high altitude, along with their lack of exposure to humans, make insects sluggish. In the lower canyon, the Red-rumped central worker bumble bees are skittish. But here, the bees remain still when approached, and I am able to take a clear pictures of several.

Song sparrows, Warbling vireos, a Spotted towhee, Yellow warblers, and Lazuli buntings, another refugee from the lower canyons, are heard in profusion. But again, they rest in distinct communities in the spacious upper reaches of the canyon instead of being distributed uniformly along the trail. Jogging uphill feels good for the legs, but my progress is slow. I cannot resist the urge to stop and listen to each community of bird and to playback stock recordings of their calls, in part to assure to identification, and in part for the simple enjoyment of somehow communicating with them. At one point, the land between trail and stream widens, but is particularly lush with a low canopy. There I hear a single American dipper, the first of the season.

For the next half mile, the trail begins to narrow travels next to the stream, and the trail crosses a series of rock outcrops. There the trail becomes broken rock interspersed with patches of stream feed marsh, and the stream water itself is so pure that individual rocks can be seen distinctly on the stream’s bottom. A few Spearleaf scorpionweeds (Phacelia hastata) that have delicate light purple, fuzzy blossoms, hide in sun sheltered spaces. Along the broken rocks, I notice the small, 5 millimeter, dried-out shells of snails covering the trail. Over a 100 feet of trail, I count about the same number of shells. On picking one up and to my astonishment, there is a miniature live snail in each shell. I am unable to identify them.

Next, the trail starts to rise towards the first of four hanging meadows, and in the first of which stills with Louis Meadows SNOTEL weather station. Aspen trees first appear, a sure sign of a Rocky Mountain meadow ahead. Mountain bluebells surround the trail on both sides, and a few Western blue elderberry trees (Sambucus nigra ssp. cerulea) rise from the surrounding bluebells. Each elderberry is heavily festooned with white, lacey panicles. In the autumn, as their dark fruit ripens, these are a favored trail snack.

As I crest the lip of Louis Meadows hanging valley, the SNOTEL station comes into view. It sits in the middle of field of Mountain bluebells the size of two football fields, and the field is surrounded by a grove of waving aspen trees to the west and Douglas firs to the east. It is an idyllic sight; one that I feel privileged to experience. I begin to feel giddy and overwhelmed by biophilia.

While my heart feels love, my intellect says my expansive feelings are not the effect of altitude at just 6,700 feet (2,042 meters), but of ultra-violet radiation. The 10 a.m. summer Sun is high in the sky, and its warmth penetrates all clothing. The exercise of hiking in Western summer mountains is a relaxing experience. The cool air makes hard, fast hiking enjoyable, but at the same time ultra-violet relaxes the muscles and the mind. Pictures taken here today all are blue tinged from the uv light. With every 1000 meters in altitude, uv light increases in intensity by 10 percent. An internet uv intensity calculator suggests this morning’s ultra-violet index is 12.

As I nearly reach the trailhead and the car, the only other hiker in the canyon today, a young man in his twenties, overtakes me, and he can only mutter, “That is so unbelievably beautiful!” as he passes by. Words escape us both. We have been closer to creation and the other world of the upper canyons of the Wasatch Mountain Range.

Driving out the lower canyon and back to that other reality of my human social and economic existence, the Mosquito Abatement District surveyors are examining their blue painted tree holes (November 7th). They are taking a census in order to estimate the canyon’s mosquito population.

* * * *

In Thoreau’s “Journal” on June 2nd, 1853, he travels through a thick fog and notes that birds are still making song. He sees cherry birds and yellow bluebead lily, an eastern plant, and red sorrel. On June 2nd, 1855, he describes a moth cocoon opening. On June 2nd, 1858, on a camping trip to a mountain top, he examines a snow bird nest, and hears a chewink, a wood-thrush, and night-hawks. On June 2nd, 1859, he finds a grossbeak nest in a blueberry bush. On June 2nd, 1860, he sees bats and a king-bird.

* * * *

Fully preserved angiosperms first appear in the fossil record about 130 million years ago and by 90 million years ago, flowering trees had dominated the forest canopy. Pamela and Douglas Soltis at the University of Washington with Mark Chase at the Royal Botanical Gardens used modern gene mapping to reconstruct the evolutionary phylogenetic clades of flowering plants (Soltis, Soltis and Chase 1999). Soltis and Soltis review state-of-the-art flowering plant clades as of 2004 (Soltis and Soltis 2004).

Magallon and Sanderson at the University of California at Davis used the rate of diversification of woody plants in the fossil record to estimate the age of the major families (Magallon and Sanderson 2001, Fig. 4). Members of the Sapindales family, which includes maples seen in the canyon, appeared about 60 million years ago. The Rosaceae family members in the canyon, which include Western serviceberry, apple trees, chokeberry, ash trees, and Woods rose, evolved relatively recently, about 45 million years ago (id). Modern oaks appear about 35 million years ago. In Utah around 35 million years ago, the Farallon Plate had passed through Utah, crustal spreading behind the plate cracked Utah’s surface, and the spreading generated Utah’s volcanic era (January 7th). The volcanic breccia at milepost 1.0 of the canyon was forming (id).

* * * *

On June 2nd, 2002, teenager Elizabeth Smart was kidnapped from her Federal Heights home and was hidden on the south slope city side slope of the Black Mountain-City Creek ridge for two months (Salt Lake Tribune, March 15, 2003). The hiding place was not found by a 2,000 person search organized by the Laura Recovery Center (id). On June 2nd, 1915, the City Commission approved plans to build a 5,000,000 gallon reservoir at Pleasant Valley (Salt Lake Herald). On Decoration Day (May 30), a picnic was held in City Creek as reported on the social page of the Deseret Evening News.

May 25, 2017

May 23rd

Continental Scale Bird Population Trends – Part II

3 p.m. Unwittingly, I disrupt the community of birds just north of Guardhouse Gate. It is another warm, clear day, and I plan to spend this afternoon’s run developing my novice song bid, soundscape skills (May 6th). Over the weekend, I have assembled recordings of about forty-five birds from the Cornell Laboratory observing lists (May 20th), and they have been transferred to my telephone. The songs are sorted in order of similarity. Thus, I hope to learn the songs by listening to them throughout my day and by replaying the recording to identify unseen birds from their sounds alone. But this is not an easy skill to acquire. Some birds caw, others have warbling songs, and still others have four or five beat calls. The variations are endless: some warbling songs end on a high note, others on a low, some are long, others are longer. Call-like songs begin on a low-note, followed by a three or six beat high tone; others begin on a high-note, followed by a five count low-note. Others have a rapid trill. Nor is there much organization by either genus of bird or its outward appearance. The Black-headed grosbeak has song similar to the smaller Song sparrow, but the Rufous-sided towhee, which looks very similar to Black-headed grosbeak, has a two-beat call followed by a rapid, machine gun trill. The Lazuli bunting, which has a seed-crushing mouth sounds like the grosbreak and towhee, has a song that is a deeper throated version of the smaller Warbling vireo which has a mouth shaped for catching insects. Conversely, similarity of form can imply similarity of call. Some of the most colorful songbirds in the canyon are insectivores. The Warbling vireo, the Yellow warbler, and the Virginia’s warbler are similar in form and have variations on the same song, like some avian version of humanity’s proto-Indo-European language, but they do not all share the same family in the binomial nomenclature system. The Song Sparrow and House Sparrow are similar in form and voice tone, but their songs are very dissimilar.

Song birds along the first mile can be roughly divided into four communities: there is cluster between the Gate and mile 0.1 and picnic site 1 along both sides of the stream. A second group collects around the bend above picnic site 3 on the east side of the stream. A third is in a hollow below picnic site 5 on the west side, and a fourth along the western oak-covered slope near mile 1.0. These cluster at every 0.2-0.3 miles are connected by loose strings of individual avians. To these four neighborhoods, a five lays to the west of and along the Pipeline trail where the Gambel oak forest gives way to open grass and brush lands. The predators – Peregrine falcons, Red-tailed hawks, Cooper’s hawks, and American kestrels (Falco sparverius) – form their own neighborhood hovering in the sky over the song birds.

I begin at the first group near mile 0.1, where yesterday there was a riot activity. Since today, it is later in the afternoon, things are more subdued, but I can still distinguish six or seven different, unseen bird voices. Initially, I struggle with making any identification, and I become absorbed in loudly replaying about ten songs that represent the voices at mile 0.1. I listen to one song, and then try playing the two or three best candidate recordings to select the best match. After five minutes, I look up, and three birds have come out of the nearby screen of green. A Lazuli bunting perches on the top branch of a thirty foot Box Elder tree. On a nearby Gambel’s oak, a female House finch perches and stares. Across the road in the Box Elder, there is a bright flash of red and yellow midway down the tree. It is a male Western tanager in full breeding plumage, and I start replay a recording of his species in order to keep his attention. For the two months of its breeding season, the head of the tanager turns a brilliant red, and this contrasts with its vivid yellow underplumage and black back. This male has caught the lengthening rays of afternoon sunlight that is softened by moisture in the air, and its red iridescent plumes blaze.

After working with the recordings for one-half hour, I am able to make rudimentary identifications by sound alone of the the Western tanager, a Lazuli bunting, a Warbling vireo, a Song sparrow, and American robin. What strikes me about this lower community is its heterogeneity. There are perhaps seven species all sharing the same one-quarter square mile. They cooperate in sharing the space. Birds are known to share the same forest space by specializing in different food niches, it is early in season and food may be plentiful, and territorial nest building may not have been completed.

Traveling up canyon, the bird community in the hollow near picnic site 5 is populated by only Warbling vireos. Further up canyon, a lone Spotted towhee caws and trills. American robins are dispersed along the first mile road.

Spring Azure butterflies have had a mini-R reproductive explosion. Usually there are three or four larger adults along the first mile road. Today, I count 20 smaller streaked blue versions only three-quarters of an inch in size. The next generation has hatched, and they play among newly cut grass. The City has come through the canyon, and as a fire prevention measure, it has mowed down the two and three foot grass around each picnic area. The air is sweet with cut-grass smell, and further back from the sickle’s cut, the green grass is interrupted by the first loud yellow of newly opened Toad flax (Linaria vulgaris), also called Butter and Eggs plant. This common roadside noxious weed has a beautiful, intensely yellow and orange, orchard like bloom.

Coming back down canyon close to six in the evening, these bird communities are silent, and only the evening town criers of the canyon, the House finches, repeat their their one-high, two low, call of three notes. Near mile 0.5, an immature Terrestrial gartersnake (Thamnophis elegans) crawls across the road. The garter eats insects, e.g. – the Stink bugs that rest along the roadside and snails (May 16th).

Incongruous to this serenity, a group of ten people walk up the road, and two have small caliber handguns strapped to their sides. These “open carry” gun rights advocates, whose right to openly carry guns is sanctioned by the state legislature, have no need for these weapons. Discharging them in the canyon below mile 0.4 violates city and county ordinances, and regardless of the legality, their attempt to drag society back into uncivility and barbarism of some imagined historical western landscape is uniformly disapproved of by the majority of members of the surrounding neighborhoods. Regularly, such displays or the discharge of firearms results in canyon walkers making worried telephone calls to the police, and the police do respond to hand out tickets. While I have some appreciation of how individualism and capitalism can drive people into a mindset that perpetually fears others, this group is not in any danger in the canyon this evening. No one is hiding in the bushes ready to rob them, and their flashy presence in the canyon is an unwelcome intrusion. Like the songbirds around them and the red blaze of the tanager, their weapons are an overstated claim for social attention and of personal territory.

* * * *

The National Audubon Society recently has become a leader in continental scale studies of populations and of future threat forecasting. In 2013, the National Audubon Society released their report titled “Developing a Management Model of the Effects of Future Climate Change on Species: A Tool for the Landscape Conservation Cooperatives” based on its Christmas Bird Count (discussed below) and BBS data (National Audubon Society, Schuetz, Distler, Langham, 2013). Coupled with global climate models, the Audubon’s Christmas Bird Count data allowed the Society to model changes in bird summer and winter ranges, summarized in national maps, based on varying degrees of global warming. In the Great Basin (and in the canyon), their model predicted increases in bird species richness during the winter season and declines in bird species richness during the summer season (id, 27-29, Figs. 2.8-2.9). In an updated study, Langham and colleagues from the Society used further advanced modelling techniques with respect to 588 North American continental birds, and they forecasted that by 2080 under a high-emissions high-warming scenario, about 53 percent of the 588 species would find that 50 percent of their current range, particularly for summer breeding, would become unsuitable (Langham et al. 2016).

With respect to continental-scale population trend studies, the Audubon Society’s annual Christmas Bird Count has collected bird counts since 1901. Unlike professional studies, the Christmas Bird Count (CBC) suffers from a number of inherent design controls. CBC bird identifications are made by error prone amateurs at differing locations and differing types of locations, e.g. – in the field or at feeders, between each annual sampling. Fluctations in the number of observers between years can introduce observation bias. Those characteristics limit the ability to use CBC data to predict trends in bird populations using traditional statistical techniques. Conversely, the CBC has been the collecting massive amounts of data from numerous amateurs around the country for more than a century. For example, in the 2016 count, over 56 million birds were manually counted. Increases in inexpensive computing power and application of advanced statistical techniques eventually allowed for the use of this citizen science data to make reasonably statistically confident statements of about trends in bird populations sampled from a wide variety of habitats. In particular, the mathematical techniques of multi-level regression, also called hierarchical modelling, allows for the extraction of bird density trends over time from the massive, but uncontrolled, data sources collected by the Audubon Society. Since 1990, habitat change from climate warming has become an important issue. Application of these analytic improvements also allow trends to be examined in the context of varying habitats, and thus, making the CBC data useful for exploring trends in habitat change from development and climate warming affects bird populations.

Soykan and colleagues with the National Audubon Society estimated North American continental populations of 551 North American bird species and for a subset of 228 species that do not frequent bird feeders using the Society’s annual Christmas Bird Count data (Soykan et al. 2016). They found that for all 551 species, 68 percent had increasing density trends from 1966 through 2013. Thus, 32 percent have a declining trend, a fact exploited in NACBI glosssy annual “State of Birds” reports. For the subset of 228 species, Soykan et al found an 0.9 percent growth trend across 1966 to 2013. They noted the geographically, declining species were concentrated at lower latitudes and increasing species were located at higher latitudes (id), and this suggests that generally, bird populations are shifting their ranges northward. For the future canyon, this is consistent with Schuetz, Distler and Langham’s 2013 modelling suggesting that warmer climates would increase winter species diversity in the Great Basin as birds move their ranges north (above).

Soykan et al’s supplemental data provides further insight into Utah trends (Soykan et al. 2016), but it also underscores the problems and differences of professional verses amateur data collection. Conflicting with the Parrish, Norvell and Howe declining Utah trends for 1992 to 2005, Sokyan and colleagues found from CBC counts for 1966 to 2013, an increasing bird population trend of 2.7 percent for Utah (Table S.4) and 2.8 percent for the Great Basin region (Table S6). Students of introductory statistics will recall the Rule of 70: the doubling time or halving time of a population can be estimated by dividing 70 by the annual rate. Thus, the CBC trend suggests that Utah bird populations will double in 25 years, while the Parrish, Norvell and Howe rate suggests populations would halve in 70 years.

Although overall, Soykan et al’s continental population trends derived from CBC counts were statistically similar to 228 professional BBS specie trends, for a small subset of 33 species, CBC and BBS trends significantly differed (Table S.9). Some of the differences involve species frequently seen in the spring canyon. For two species, Swainson’s Hawk and the Black-headed Grosbeak, the CBC found continental declines around 3 percent per year, while the BBS surveys found increases of less than 1 percent per year. A three percent decline suggests populations will halve in about 25 years. For eight other species found in the canyon, the CBC found a slight increasing population trend, while BBS found populations declining at more than 1 percent per year: Song Sparrow, American Kestrel, Belted Kingfisher, Mourning Dove, Orange-crowned Warbler, Yellow Warbler, Chipping Sparrow, and the Broad-tailed Hummingbird.

Again, overall bird population studies continue to indicate that currently and for the near future, bird specie diversity and bird populations should remain stable or have a slight decline, as indicated by the Parrish, Norvell and Howe studies (Parrish et al. 2007). Soykan et al and Langham et al conclude overall birds are moving their summer ranges northward and they are decreasing the area of the summer and winter ranges around the best habitats in response to a warming climate, and under that scenario, Utah bird populations would increase as birds move further north. But whether population trends will decline in a severe global warming occurs scenario, whether they will increase as more birds move their ranges north in response to southern latitude warming, or whether Utah bird populations will increase after the reversal of the current Intermountain drought phase of the Pacific Quasi-Decadal Oscillation (February 7th) remains to be seen. Continued monitoring, such as that occurring through professional and citizen science surveys, is the only means to have a definitive early warning of any dramatic change, for better or worse. Other unanticipated changes, both good and bad, may also occur.

These mathematical models of bird populations, as with proof of biophilia studies, provide only the most general of signs and no clear answers. Proof to a reasonable degree of scientific certainty cannot be found in the statistics of bird populations, and thus, we are forced to fall back on human values and human judgment in deciding what to and how to protect nature. But as with local weather and the Pacific Quasi-Decadal Oscillation, it is only by looking on a continental scale that over-arching patterns in nature can be seen. A local-only perspective, like Plato’s prisoners in his allegorical cave, can give us a limited, uninformed, and wrong view of the world.

There is a further brilliance to the CBC data and Schuetz, Distler and Langham’s 2013 study. They provide detailed ranged summer and winter maps for 36 bird species of concern (id, 114-181) on a continental scale and with previously unseen fidelity (Schuetz, Distler and Langham’s 2013). Presumably, such maps can be generated for all birds in the CBC study. Previously, bird summer and winter range maps were rendered with broad colored areas across a U.S. map with northern and summer range lines, e.g. – those seen in my old 1990 Peterson’s Western Birds guide or my favored, dog-earred 1966 Guide to Field Identification of North American Birds, illustrated by Arthur Singer. The ranges of migration were indicated by broad directional lines. By combining CBC bird observations with satellite habitat data, Schuetz et al render detailed core range maps.

* * * *

On May 23rd, 2012, Lowell Bodily, Salt Lake Valley Health Department, again reported on homeless tent camps in the valley, and he notes that some homeless camp along the Bonneville Shoreline Trail in and near City Creek Canyon (Salt Lake Tribune). On May 23rd, 2006, the Lion House reports that it hosts about 82,000 visitors per year (Salt Lake Tribune). (In the 1850s, the Lion House sat next to the tollgate that controlled access to City Creek Can yon.) On May 23rd, 2002, in a letter to editors of the Salt Lake Tribune, a Sandy resident decries how a new luxury home has defaced the beauty of Ensign Peak and City Creek Canyon (Salt Lake Tribune). On May 23rd, 1996, Anschutz Ranch East Pipeline Inc. proposes to build a crude oil pipeline from Park City that would cross through City Creek near the water treatment plant (Salt Lake Tribune, June, 24, 1996). On May 23rd, 1914, the Salt Lake Telegram published a photograph layout and description of driving the new scenic boulevard up City Creek, along 11th Avenue and down 1300 East (Salt Lake Telegram). On May 23rd, 1905, Land and Water Commission Ben D. Luce requested that the City council to ban automobiles from driving up City Creek Canyon due to the possibility that they will cause accidents by frightening horses (Salt Lake Herald).

May 20, 2017

May 20th

Spring Bird List

3:30 p.m. In the morning I am woken by the cawing of an American crow (Corvus brachyrhynchos) standing outside my window, but then I drift back off to sleep. Around noon, neighbors are buzzing over their photographs of a common Red fox (Vuplus vulpes) hunting mice in the city cemetery about one-third of a mile from my home and on the south-City side of the east-south canyon ridgeline.

In the afternoon, the cold snap of the last few days has ended and the canyon is again warming into the sixties under blue, ideal spring skies. Driving into the canyon along Bonneville Drive, the grasses have reached up to three feet high, but in the canyon they remain between one foot to eighteen inches in height. Along Bonneville Drive, young Curly dock plants rise, but there are none in the fields at mile 1.5. Arrowleaf balsamroot has noticeably disappeared from the surrounding hillsides through mile 1.5, and its yellow color has been replaced by the duller yellow of fields of Dyer’s woad. Along the first mile, where a few days ago there was a single Sticky Wild Geranium, there are now ten, and four blue penstemons are blooming. The other major blossom are the white inflorescences of chokecherry bushes or trees. Blue is the color of canyon near the stream, but at the Pleasant Valley lower field, I scan the surrounding hillsides for a hint of Arrowleaf balsamroot. There is none, only the green of the balsamroot’s wide bases surrounded by wide swaths of Dyer’s woad. A pattern repeats in the many sun-exposed small gullies that lead to the western salient’s ridgeline and below the eastern salient’s cliffs: Groves of green Gambel’s oak or Red Maple fill the damp soil or seeps along side canyon gullies, but where the side canyons begin to flare out, the dryer soils, formerly covered with balsamroot, are now covered in Dyer’s woad. At lower elevations along the western slope above the Pipeline Trail and above Bonneville Drive, some balsamroots remain in bloom, but their numbers are rapidly dwindling from their shriveling flowers.

Butterflies are recovering in the rising heat. Yesterday’s Western tiger swallowtail and Desert Elfin butterflies are joined by a few Spring Azure and White cabbage butterflies. About eight new, small and black unidentified butterflies appear. They move too fast to see any detail. Two examples of a new unidentified small black spider are on the road, and a small black ant is carrying a whole insect pupae, about eight times it size, back to its underground ant lair. Common houseflies are active on the road, and a larger Blue-eyed darner dragonfly patrols up and down the road. Along the Pipeline Trail, I flush out two Mormon crickets. Instead of red underwings (May 8th), they now flash muted orange underwings.

Where the chokecherry bushes are warmed by the sunlight, they are the buffet for the insects. The best of these is along the Pipeline Trail near mile 0.9, and the chokecherry bush is covered in about seventy bees, flies and a American Lady butterfly. The bush sits near a seep in a bend in the trail. It is in a large-tree shaded area, but a single shaft of light penetrates and warms the bush and its nearby air to fifteen degrees more than its surroundings. Another shaded chokecherry bush about fifteen feet away is ignored by these flighted insects. On the chokecherry inflorescences there are also two types of flies, one large and one small, and three types of bees, including a red-rumped worker bumble bee, wild common honey bee (Apis var.) and one of two Utah varieties of the Carpenter bee (Xylocopa californica) (Hodgson and Trina 2008). Near this seep, a tiny unidentified slug, about 1 centimeters by 3 millimeters in diameter crawls up the trail, and I help to the mud next to the seep. Three other chokecherry bushes fifty yards up from Guardhouse Gate and a full chokecherry tree at picnic site 4 are similarly covered, but to a lesser degree. These are also sunbathed.

A flock of four distant raptors circle and glide up canyon. Birds along the first 1.5 miles of road can be divided roughly into seven neighborhoods or groups: at Guardhouse Gate, at road mile 0.4, at road mile 1.0, the lower half of Pleasant Valley, mile 1.1 to 0.9 of the Pipeline Trail, the Trail between mile 0.9 and 0.5, and the Trail between mile 0.5 back to the Gate. There are more calls than yesterday, with between 5 to 10 birds in each neighborhood. By sound alone, I can pick up a few of the easiest out of a chorus of ten different songs: the Lazuli Bunting at the Gate; a Song sparrow and an American Robin near mile 0.5; a near road mile 1.0,; and a Black-chinned hummingbird flying near Trail mile 1.0. I have gathered recordings of about 40 spring birds on my smart telephone, and have begun to replay them constantly in the hopes of building a beginner’s skill for distinguishing their songs. The avian soundscape is being to make more sense to my untrained ear.

As I reach Guardhouse Gate, there is a young woman standing 50 feet from the road, half obscured by blinds made leafed branches of Gambel’s oak, and she is singing gospel and folk songs in a loud but beautiful voice. She has long-black hair, is wearing a short, summer dress of yellow printed ethnic cotton, and is illuminated by that special warm light before dusk. Several strolling couples and myself discreetly walk up to the side of the road for an impromptu concert. For a moment, my mind is momentarily transported back to my adolescence and a similar scene from 1971. After a few minutes, everyone wanders away, leaving her to practice her singing without disturbance, but grateful for a unique moment.

* * * *

The slate of spring canyon birds for this year has sufficiently filled out that a list is timely. The 54 species represented shows the diversity of bird life that is finding living niches in the canyon and making connections between its plants and insects.

List of Spring Birds in City Creek Canyon March through May, 2017 by Order and-or Family (N=54)

Orders Accipitriformes and Falconiformes – Hawks, Eagles and Falcons – Birds that Hunt Other Birds

• Bald Eagle (immature) (Haliaeetus leucocephalus).*

• Cooper’s Hawk (Accipiter cooperii).

• Golden Eagle (Aquila chrysaetos).

• Northern Goshawk (Accipiter gentilis).

• Peregrine Falcon (Falco peregrinus).

• Red-tailed Hawk (Buteo jamaicensis).

• Sharp-Shinned Hawk (Accipiter striatus).

Order Anatidae – Ducks

• Mallard (Anas platyrhynchos).

Order Apodiformes – Swifts and Hummingbirds

• Black-chinned Hummingbird (Archilocus alexandri).

Order Galliformes – Pheasants and Guineafowl

• California Quail (Callipepla californica).

• Chukar (Alectoris chukar).

• Wild Turkey (Meleagris gallopavo).

Orders Piciformes and Coraciiformes – Woodpeckers and Kingfishers

• Belted Kingfisher (Ceryle alcyon).

• Downy Woodpecker (Picoides pubescens).

• Northern Flicker (Colaptes auratus).

Order Strigiformes – Owls

• Western Screech-Owl (Otus kennicottii).*

Order Passeriformes – Larger Perching Birds

Family Corvidae – Crows, Jays and Magpies

• American Crow (Corvus brachyrhynchos).

• Black-billed Magpie (Pica pica)

• Common Raven (Corvus corax).

• Steller’s Jay (Cyanocitta stelleri).*

• Western Scrub-Jay (Aphelocoma californica).

Order Passeriformes – Mid-sized and Smaller Perching Birds

Family Cardinalidae – Cardinals and Grosbeaks

• Black-headed Grosbeak (Pheucticus melanocephalus).

• Lazuli Bunting (Passerina amoena).

• Western Tanager (Piranga ludoviciana).

Family Columbidae – Pigeons and Doves

• Eurasian-collared Dove (Streptopelia decaocto) (invasive).

• Mourning Dove (Zenaida macroura).

Family Emberizidae – Sparrows and Buntings

• Chipping Sparrow (Spizella passerina).

• Dark-eyed Junco, Slate type (Junco hyemalis).*

• Green-tailed Towhee (Pipilo chlorurus).

• House Sparrow aka European Sparrow (Passer domesticus) (invasive).

• Rufous-sided Towhee (Pipilo erythrophthalmus).

• Song Sparrow (Melospiza melodia).

• Spotted Towhee (Pipilo maculatus).

Family Fringillidae – Finches

• House Finch (Carpodacus mexicanus).

• Lesser Goldfinch (Carduelis psaltria).

Family Hirundinidae – Swallows

• Bank Swallow (Riparia riparia).

• Cliff Swallow (Petrochelidon pyrrhonota).

• Northern Rough-winged Swallow (Stelgidopteryx serripennis).

• Violet-green Swallow (Tachycineta thalassina).

Family Paridae – Chickadees

• Black-capped Chickadee (Poecile atricapillus).

• Mountain Chickadee (Poecile gambeli).

Family Parulidae – Wood-Warblers

• Orange-crowned Warbler (Oreothylpis celata).

• Virginia’s Warbler (Oreothylpis virginiae).

• Yellow Warbler (Dendroica petechia).

Family Turdidae – Thrushes

• American Robin (Turdus migratorius).

• Townsend’s Solitaire (Myadestes townsendi).

Family Tyrannidae – Tyrant Flycatchers

• Dusky Flycatcher (Empidonax oberholseri).

• Olive-sided Flycatcher (Contopus cooperi).

Family Vireonidae – Vireos

• Plumbeous Vireo (Vireo plumbeus).

• Warbling Vireo (Vireo gilvus).

Family – Other with Family Name

• Blue-gray Gnatcatcher (Polioptilidae Polioptila caerulea).

• European Starling (Sturnidae Sturnus vulgaris) (invasive).

• Red-breasted Nuthatch (Sittidae Sitta canadensis).

• Ruby-crowned Kinglet (Regulidae Regulus calendula).

Sources: Cornell Lab. 2017 Ebird Observation Lists by Bryant Olsen with Joshua Hunt; Author’s Observations. * – Author only sighting claimed.

* * * *

The Wasatch Front Mountain Range has not seen a decline in the number of avian species since the Euroamerican arrival, but no opinion is expressed on any decline in the population of these birds. As noted before (March 4th), ornithologist Robert Ridgeway conducted a survey of birds in Parley’s Park at the summit of Parley’s canyon about ten miles from City Creek Canyon between June 23rd and August 16th, 1869 (Rawley, 69-79). He found 116 bird species. Comparing Ridgeway’s list with Cornell Ornithology Laboratory’s Ebird List for City Creek Canyon for 1900 through 2017 shows 149 species (Cornell Ornithology Lab. 2016, Cornell Ornithology Lab. 2017). For the years 2000 to 2017, 147 species are listed, and for 2012 to 2017, Cornell totals 143 species (id). There are some minor non-duplicates between the historical and modern lists. The Yellow-bellied sapsucker is not currently found in City Creek, and the range of other birds has changed. Birds such as sandpipers and Sandhill Cranes do not presently frequent City Creek but can still be found at the Great Salt Lake’s beaches and marshes. But essentially, the avian diversity of Ridgeway’s 1869 mountain birds is still intact at City Creek Canyon after 148 years.

That the diversity of Utah’s many migrant birds is stable is also shown by Parrish, Norvell, and Howe of the Utah Division of Wildlife Resources in a multi-year study from 1992 to 2005 (Parrish et al. 2007; Norvell, Howe and Parrish 2005). Examining 202 statewide bird species over 12 years at 37 Utah sites, Parrish and colleagues found no significant trend in mean annual species richness (id, p. 27, Fig. 4).

* * * *

On May 20th, 2014, Salt Lake Fire Captain Scott Winkler reports that the City has spent $650,000 on six new firetrucks specialized from fighting fires in grass brush areas around luxury homes near Ensign Peak and in City Creek Canyon (Deseret News). On May 20th, 1903, the City Council and Mayor considered issue bonds to construct reservoirs including a 5,000,000 gallon reservoir at Pleasant Valley (Salt Lake Telegram). On May 20th, 1901, an estimated three-hundred people went up City Creek Canyon, one-thousand to Liberty Park, and three-hundred for recreation (Salt Lake Tribune). On May 20, 1896, the City council considered moving the responsibility for maintaining City Creek watershed protection to the health department and the duties of the City Creek Canyon patrolman were described (Salt Lake Tribune). There were five full-time patrolmen. Three men are employed at the lower Brick Tanks keeping the screens clear of debris. Two men are employed for 12 hours per day to service the upper high-line tank screens and to patrol the upper canyon to prevent sheep grazing. Two other men service the Twentieth ward tank and the Capitol Hill Reservoir (id). City Creek has been rip-rapped for two miles above the lower Brick Tanks. On May 20th, 1896, high spring run-off has turned City Creek into muddy water and the water is clearing (Salt Lake Herald).

May 19, 2017

May 19th

Sun Dappled Stream and Butterfly Hosts

5:15 p.m. The first mile is almost fully leafed-out and the understory is well-developed. The stream, which throughout the winter is fully visible, can now only be caught in partially obscured glimpses where the trees and underbrush break. Through those screens, the low, warm, yellow light of the falling Sun glides and lands on clear surface of the stream in round dapples. Today is an advance hint of the stream during the summer canyon summer which is now one month away. The key today difference is the stream runs high, but like the summer it has turned transparent. The stream has fallen about four inches overnight, but the water is pure. The spring period in which the stream runs, according to the City’s 1895 Mayor Baskin, as “very muddy, unwholesome and unpalatable water” (Feb. 6th) has passed. Rocks can clearly be seen through the rushing waters between its windowed surface.

It remains unseasonably cold – in the low fifties in the canyon and near freezing overnight – from the passage of the last storm. People in the city complain about it constantly having wearied of prior long winter season, and in the canyon, this has emptied the road. The cold has also suppressed the birds and the butterflies. A lesser total of 15 birds are heard along the road and the Pipeline Trail. Only a single Western tiger swallowtail and some gnats make an appearance.

A single Red-tailed hawk floats one hundred feet over the parking lot. At picnic site 1, my evening Lazuli Bunting is perched on the tallest tree. Along the Pipeline Trail using audio recordings and spectrograms, I am able to identify the songs of three of the some ten song birds, i.e. – a , a Warbling vireo, and a bleating evening “keah” from a Northern flicker. I have begun to make some progress into understanding the canyon birding soundscape (May 6th).

When the butterflies rally in next week’s rising heat, what will the adult butterflies and their caterpillars eat? I can find nothing specific for Utah, and therefore, using sources for other States, I compiled a list of possible hosts and food sources for some of the recently seen butterflies. It is a starting point, suggestive, and not authoritative. Although the butterfly spring peak has passed, I will have to take better notes on which butterflies are associated with which plants.

List of Possible Plant Hosts for Butterflies and Their Caterpillars in City City Creek Canyon
• Mourning cloak butterfly. Adult: Tree sap from Gambel’s oaks. Willows, elms, maple and ash trees. Caterpillar: The same plus aspen and river birch.

• White cabbage butterfly. Adult: Nectar from mustards, dandelion, asters, clovers and mints. Caterpillar: Same. There are various analogs to these plants in the canyon.

• Painted lady butterfly. Adult: Yarrows, thistles, sagebrush, sunflowers, milk-thistle, stinging nettle. Caterpillars: Same plus milkweed.

• American lady butterfly. Adult: Sagebrush, thistles, Wood’s rose and vetches. Caterpillar: Sunflowers, burdock, milkweed and aster.

• White-lined sphinx moth. Adult: Nectar from columbines, larkspurs, clovers, and thistles. I have seen Giant sphinx primary feed in the spring on dandelion. Caterpillar: apple and elm trees.

• Spring Azure. Adult: Dogwood, and berry plants.

• Common sulphur butterfly. Adult: Clovers and vetches and nectar from many plants. Caterpillar: Clovers and vetches.

• Sara Orange Tip butterfly. The Sara Orange tip is similar to the Julia Orangetip butterfly (Anthocharis julia browningi). For the Julia – Adult: Flower nectar from rock cresses, violets, and mustards. Caterpillar: Rock cresses.

Source: Dallas County Lepidopterists’ Society (2008). Host Plants by Butterfly (Web).

* * * *

University of Utah Meteorology Professor James Steenburgh recommends a new climate change application to examine whether local daily weather patterns are unusual. People tend to mid-interpret unusual cold and hot seasons as indications either for or against the existence of global warming, regardless of the separate issue of whether it is human-caused or not. The University of Maine and its Climate Change Institute has deployed an internet application that shows each day, a map of the globe and how surface temperatures at each point on the Earth differs from the average temperature at that point for that day over the last seventy years (University of Maine 2017a). A large dark blue spot on the map hovers over Utah, Colorado and Wyoming, indicating that the Intermountain West is 18 degrees Fahrenheit cooler that normal. The coldspot sits in the cradle of a “U” shaped dip in the jet stream. Overall, the globe is about 0.5 degrees warmer. The lesson to be learned from the map is even when their are local anomalies in weather, such as in the canyon today, the world average remains steady. The world average is the indicator of global warming and not local conditions.

* * * *

On May 19th, 2008, the City closes City Creek Canyon to spray herbicides on the invasive Starthistle plant (Salt Lake Tribune, May 20, 2008). On May 19th, 1906, the City tankman and former city councilman George D. Dean, was found dead at the Water tankman’s house in City Creek Canyon (Deseret Evening News, Salt Lake Tribune, May 20th, 1906). On May 19th, 1875, seminary students went picnicking in City Creek Canyon (May 19, 1875).

Older Posts »

Blog at WordPress.com.