City Creek Nature Notes – Salt Lake City

July 30, 2017

July 21st, 2016 – End of Cyclical Year, Revised and Reposted

Microorganisms, Moss, Lichens, Glaciers, and Climate Trends

(Revised and expanded after lichen identification completed.)

3:30 p.m. It is another day intense summer heat, and as I pull into the parking lot, I take notice of a large Limber pine (Pinus flexilis at the lot’s end, south of the row of cultivar Horsechestnut trees. The Limber pine, Narrowleaf cottonwoods and the Horsechestnuts are among the largest plant organisms in the canyon, excepting some of the 50 foot diameter copses of Gambel’s oaks that may be one large, genetically identical sister plant. A bizarrely twisted, immature Limber pine hides behind to the east of side of the Guardhouse Gate building, and just past the gate, another conifer, a mature 70 foot tall native Engelmann spruce (Picea engelmannii). Key taxonomic differences between the two is that round pine needles occur in groups of two and flat fir and spruce needles are single. At mile 1.7 at picnic site no. 12. There a forty foot tall Rocky Mountain juniper (Juniperus scopulorum) is flanked by two taller Engelmann spruce trees. Although native to northern Utah, these three trees have been artificially planted to provide shade for picnic area.

Jogging up canyon about 100 yards up from the gate, I pass a deadly Bittersweet nightshade plant with small 1.5 inch green fruit. Splitting one of the fruit open, it is full of 1 mm bright orange larvae, and testing a few more, they are all infected. Given the number of young children that pass this spot, this is probably not a good place for a poisonous plant.

In the heat, I jog alone through an empty road, except for bicyclists. Near mile 0.3, sounds in the Gambel’s oak forest undergrowth betrays an yearling Mule deer stares back through the leaves. It is waiting for me to pass, so it can reach the stream and water. A bicyclist streaks unaware of its presence. A slight anabatic up-canyon wind provides a brief relief.

Beginning at mile 0.5 and the pond at picnic site 5, I collect the sponges placed in the stream and seeps on July 15th. The sponges have been collecting microorganisms for several days. I have looked at water samples from the stream under a microscope several times since May, but have never seen any microorganisms. That is a testament to how pure City Creek Canyon water is. My microorganism observing guide suggests using the sponges to trap organisms over time. The sponges also provide a protected framework that might appeal to microorganisms by providing shelter. The first sponge was located below the pond at picnic site 5, and it was placed under a cover of rocks such that stream water would continuously flow through the sponge. The first from the stream is a dark brown – a good sign. The second collected from the seep below picnic site 6 and the third is retrieved from the watercress seep also below picnic site 6. All three are a dark brown-grey color; the sponges have worked.

At the seep below picnic site 6, the Horsemint is in full bloom, and I count 32 Cabbage white butterflies feeding on them. A single Central bumble bee (Bombus centralis) collects among the butterflies. These are joined by an orange Mexican queen butterfly. I stand mesmerized by the glade for a few minutes. Nightshade is now also blooms in this glade.

Carpenter bee (Xylocopa californica) reappear after their first spring flight. Uniquely, they fly in a circular pattern closely around me twice, and having rejected me as potential food, they fly off with purposeful intent.

Proceeding again up canyon through the heat, only a few birds are heard at some distance from the stream. I cannot distinguish their calls, except for the nasal cawing of a Red-breasted Nuthatch (Sitta canadensis).

At mile 1.1, I stop where a large rock ledge overhangs the stream and admire a tremendous cottonwood cross, a Populus angustifolia x fremontii S. Wats. This 100 foot tree with a twenty-four inch trunk betrays it hybrid nature through two suckers, each 8 inches in diameter at the base. The parent tree has ovate leaves typical of the cross. Those leaf forms continue on one of the suckers, but at its very tip is one perfectly formed triangular Fremont popular leaf. Mid-way up the second sucker, that is also covered in hybrid leaves, is a bracket of perfectly formed thin Narrowleaf cottonwood leaves. This tree must be at least 100 years old, and perhaps it is older and witnessed the arrival of the Euro-American colonists in 1847. At a few minutes of enjoying this tree, I notice that it is looking back at me. More precisely, another Mule deer is on the rock ledge on the far side of the stream, and it is intently following me. I continue up canyon so it can reach water unmolested.

At mile 1.2, I turn down-canyon on the Pipeline Trial in order to photograph some of the lichens on rocks that line the trail down to where it is perpendicular to the Red Bridge and Chimney Rock. The Gambel’s oaks that border each side of the trail are covered in a ubiquitous dusky orange lichen that is found throughout the canyon. Here the rocks are principally volcanic breccia or limestone conglomerates. The first rock has lichens that are three inch diameter turquoise dollops with raised fruiting centers. The second rock has a large turquoise dollop on one corner and fire yellow bright lichen on one face. This rock also has small dark black lichen circles. The third rock has bright orange circles with darkened brown centers. The fourth has similar bright orange two inch dollops with fruiting orange centers. This same orange rock lichen is common in the canyon. For example, it covers parts of the rock bridge at Weeping Falls near mile 5.2. This bright orange lichen only appears on rocks, and its dusky orange brother keeps to the trees. Near the end of this segment, a gully provides more shade an water. Here, the rocks are covered in complex moss complexes, and unidentified green-black small-onion like moss with fine white hairs.

Continuing up canyon to a western gully near mile 2.3, there is another slope with favored lichen rocks. Here the rocks are sandstone based. In the gully, the first rock is a kaleidoscope of circular lichens colored bright orange, turquoise, and black. The next rock is covered with a bulbous green-black moss with fine white hairs. This is followed by a rock covered in turquoise-green lichen that has a darker brown center. Finally, two foot square areas of an unidentified green-black bulbous lichen attach to a rock ledge’s horizontal surface. Looking over some of my other lichen photographs above milepost 5.0, two prominent upturned limestone ledges stick out next to the road. On these a montane grey-milk lichen that look like delicate leaf petals cling to the stone.

This is all a riot of color mixed with abstract design. Lichen are oldest and, for me, they embody the most alien of terrestrial life. I also hold them in the highest respect because they are all a form of extremophile. They thrive on canyon rocks that both bake to temperatures over 150 degrees during the summer, and they continue to reproduce during the subzero cold of deepest winter. They live on the surface of barren rocks and take all that they need from the passing air and rain. And, what else the need in terms of minerals, they obtain by dissolving the solid rocks to which they attach. Moss are less of an extremophile, but tree moss are one of the few plants that continue photosynthesis through the depths of winter (January 10th).

Returning down-canyon near mile 1.3, ahead, I again here the screeching of a Peregrine falcon. Two falcons are chasing two unidentified hawks away from the sandstone cliffs on the east wall of the canyon near mile 1.0. One falcon easily chases a hawk up canyon and over the ridge. The second hawk begins to climb in lazy, large circles, and the remaining peregrine follows. The peregrine raises higher and then stoops the hawk, all the while screeching loudly. This continues for about 15 minutes. At times I loose sight of the pair as they circle overhead with the Sun behind them. The spring sky is a deep blue, but today, the summer sun makes the atmosphere a white turquoise.

Continuing down-canyon, at picnic site 5 where I collected one sponge, an innovative young couple using long lengths of climbing webbing, have suspended two bright Central American woven hammocks over the stream. They lay side-by-side enjoying the stream-cooled air.

At Guardhouse Gate, there are the cut fireplace-sized remains of a large tree. A quick count of its rings indicates the tree is over one-hundred years old. As the the city cuts down infirm trees in the canyon, they leave the carcasses here as free firewood. The cause of this tree’s demise can be seen in one segment of log – it is riddled to the inner pith with boring beetle tunnels. To supplement my gathering of water borne small life, I also collect from the logs’ surfaces, samples of Green tree moss (probably Orthotrichum sp.) and of orange, black and turquoise lichens.

The lower flood retention pond is full of algae mats. A family of mallards graze on the greenery. The chicks, who a few weeks ago where only four inches long, are now twice that size.

At home, I examine water from the three sponges in under a microscope at 60 power of magnification in order to see some of the smallest plants and animals of the canyon. All of the samples consist mostly of bits of algae, some of which are strung on the ends of mold filament, pulverized bits of plant, and specks of silica. No moving protists are seen. A few rectangular-celled with diatoms with well-defined glass-like walls of the genus Fragellaria are found. Two circular diatoms of the genus Stephanodiscus are seen. Finally, a single, transparent perfectly formed leg of an insect exactly fills the eyepiece and then floats away. This is clean City Creek water.

At home and through the hand-lens, the leaves of the moss, which are present both on trees and on rocks in the stream, reveal their earlier evolution as compared to the leaves of the surrounding trees. They are thin and transparent sheets of green cells, and they lack any vascular features found in true leaves.

Under the hand-lens, where the black lichens interface with the tree’s bark, a separate white hyphae through which digestion occurs. Lichens are composite organisms of algae or green bacteria living symbiotically with fungi. Through the hand-lens, one can see two colors, representing the two organisms in the turquoise and orange lichens. The turquoise portion of the turquoise lichen is also surrounded by white hyphae. The second color is green, and through the lens, these resolve as small bits of algae. That lichens exist on almost all of the trees in the first two miles of road is a good sign. Lichen are sensitive to air pollution and will disappear if Salt Lake’s air quality severely deteriorates over a long period.

The length of the day have changed noticeable from June 20th’s summer solstice. Sunset comes an hour earlier around 9 p.m.

* * * *

St. Clair, Newberry and Nebeker (1991 and 1995) provide a comprehensive list of Utah lichens. They and Flowers (1954) describe which species of lichen are common in various northern Utah habitats, including for the scrub oak forest of Gambel’s oaks, the higher subalpine habitat of Quaking aspens, and the montane habitat of conifers. Brodo of the Canadian Nature Museum and Sharnoff and Sharnoff of the Missouri Botanical Gardens published the definite photographic identification guide for lichens: their massive 2001 “Lichens of North America”. They note common lichen species for the Gambel’s oak forest include Lecanora hageni, Phaeoplzyscia orbicu/aris, Physcia adscendens, Physcia dubia, Physcia stellaris, Plzysconia grisea, Xanthoria fallax, and Xanthoria polycarpa. Using these sources, my descriptions and photographs match with the following scientific names:

List of Lichens

• Hooded sunburst lichen (Xanthoria fallax): This is the dusky-orange lichen that covers most of the Gambel’s oak trees in the canyon (Brodo, Sharnoff and Sharnoff, 744).

• Pin-cushion sunburst lichen (Xanthoria polycarpa): This is the bright orange lichen that covers many rocks in the canyon, including the stone bridge at mile 5.2 (Brodo, Sharnoff and Sharnoff, 746).

• Stonewall rim-lichen (Lecanora muralis): This lichen was the even-toned yellow-green (turquoise) circles on rocks along the Pipeline Trail (Brodo, Sharnoff and Sharnoff, 383)

• Sagebrush rim-lichen (Lecanora garovaglii). This is the yellow-green (turquoise) lichen with a darker green center on a rock along the Pipeline Trail (Brodo, Sharnoff and Sharnoff, 380).

• New Mexico rim-lichen ( Lecanora novomexicana): This darker yellow-greenish lichen with yellow fringes was found in the gully near mile 2.2 (Brodo, Sharnoff and Sharnoff, 384).

• Gold cobblestone lichen (Pleopsidium flavum): This is the bright yellow lichen on one rock along the Pipeline Trail. (Brodo, Sharnoff and Sharnoff, 578).

• Powder-tipped rosette lichen (Physcia dubia): This is the delicate leaf-shaped lichen on the limestone vertical fins near mile 5.0 (Brodo, Sharnoff and Sharnoff, 554).

Like today’s Great Salt Lake (May 26th), ancient Lake Bonneville’s water levels and glaciation of the Salt Lake’s canyons at the end of the last ice age gives clues as to the climate of the Salt Lake valley and the canyon. That record is hidden within the valley’s rocks and trees. In 2015 and updating a prior study from 1997, Oviatt at the University of Kansas reconstructed date ranges in which ancient lake rose and fell by radiocarbon dating organic material in tufa deposits along the lake’s former shorelines. He concluded that Lake Bonneville began its rise about 30,000 years ago (id., Table 1). Between 15,000 and 18,000 years ago, Lake Bonneville reached its maximum height at about 5,100 feet, or near the northern end of Pleasant Valley in the canyon near mile 1.7. Following the failure of the Red Rock ice dam in Idaho, the Lake drained to the Provo Shoreline, which is Bonneville Drive and 11th Avenue in the City. Other the next 15,000 years, the lake gradually declined to the current level of the Great Salt Lake (id).

In 2011, Laabs, Marchetti, and Munroe and colleagues used residual Beryllium 10 isotopes in rocks, taken from the glacial moraines in Little Cottonwood Canyon in Salt Lake valley and American Fork Canyon in Utah valley, in order to date when glaciers retreated up from the ancient lake’s shores. An ongoing question existed amongst geologists, based on conflicting earlier studies, concerning whether the Salt Lake glaciers receded before, coincident with or after the end of the last Ice Age and-or before, coincident with or after the end of the peak level of Lake Bonneville. Figure 1 of their study shows the area of glaciation stretching from American Fork to the south and Farmington, Utah in the north, thus, including City Creek Canyon. They concluded that glaciers covering the Salt Lake valley canyons started to retreat 15,700 plus or minus 1,300 years before the present, either during or shortly after the maximum 5,100 foot shoreline height of ancient Lake Bonneville. Their confidence interval overlaps the 15,000 to 18,000 years before the present found by Oviatt for the maximum height of Lake Bonneville. Deglaciation started about 4,000 years after the end of the continental Ice Age at 18,000 years ago. Because the lake reached its maximum and retreat of the local glaciers started after the end of the Ice Age, Laabs, Marchetti, and Munroe et al concluded that the local climate between 18,000 and 15,000 years ago was wetter than thought by prior geologists.

That there were glaciers in City Creek Canyon below Grandview Peak and at the canyon’s final hanging valley (September 8th) seems evident from an examination of any terrain map and hiking the canyon. But to my knowledge, there are no studies dating the glacial deposits in City Creek Canyon. Van Horn and Crittenden’s geologic map shows no surficial glacier features (Van Horn and Crittenden, 1987, U.S.G.S. I-1762). Perhaps there was a lighter ice sheet over the canyon 15,000 years ago, but it was insufficient to crave the bedrock.

The Engelmann spruces and other pine trees that live in association with the spruces, tell the history of Salt Lake valley’s and the canyon’s climate for the last 13,000 years before the present. In Little Cottonwood Canyon, Engelmann spruce share the glacial scoured hillsides with Limber pine (Pinus flexilis). Engelmann spruce is more tolerant of wet earth and colder soil temperatures, and Limber pine is more tolerant of dry earth and warmer soil temperatures. Thus, as climate changes occur over thousands of years, the relative amount of pollen left in soil layers beneath their canopy gives a general indication of weather in the distant past. In 1979, Madsen and Currey at the University of Utah used a bog in Gad Valley near Snowbird Ski Resort to reconstruct Utah’s late Holocene climate (Madsen and Currey 1979). Based on moraine deposits, the maximum extent of glaciation that extruded glaciers into the Salt Lake valley floor occurred about 25,000 years ago. After a period of warming, a second smaller glacial period ensued and Madsen and Currey, using the bog at Gad Valley places that around 12,500 years ago. Then glaciers within Little Cottonwood Canyon retreated and disappeared. A similar bog in Albion Basin at the top of Little Cottonwood is dated at 9,500 years (id, 258). Using the ratio of Engelmann spruce and Limber pine in the Gad Valley bog, Madsen and Currey were able to reconstruct the relative climate of the canyon, and by extension the Salt Lake Valley and City Creek Canyon, for the past 12,500 years. Between 13,000 and 8,000 years before the present, the valley’s climate was cooler and wetter than today. Between 8,000 and 5,000 before the present, advancing Limber pines indicate a warmer and drier climate than today. Then there was a brief period in which temperatures greatly declined, followed by a quick warming and a gradual decline to today’s cooler temperatures with respect to the 13,000 year mean (id, at Fig. 6 and 265). In contrast, precipitation has been on a gradual decline for the last 6,500 years and is currently near the 13,000 year mean (id). These are consistent with Grayson’s climate divisions for the Great Basin Holocene generally: 10,000 to 7,500 years before the present (early), 7,500 to 4,500 years before the present (middle), and 4,500 years before the present until today (late) (Grayson, Chap. 8).

Over the last 4,500 years, a picture of trends in Salt Lake City’s local climate can be developed from tree ring, Gad Valley bog pollen, and other climate research. Since 4,500 years before the present, there was a brief period in which temperatures greatly declined, followed by a quick warming and a gradual decline to today’s cooler temperatures with respect to the 13,000 year mean (Madsen and Currey, Fig. 6 and 265). It is now colder than average than over the last 13,000 years. The Little Ice lasted from about 1300 C.E. to 1850 B.C. There were highly variable swings in temperature during this time, but those changes were not global, but regional (Solomon et al 2007; Houghton et al 2001). In Utah, the Little Ice Age ended in 1850 and was followed by the most severe winter in Utah history, the winter of 1855-1856.

Since 4,500 years before the present, precipitation has been on a gradual decline for the last 6,500 years and is currently near the 13,000 year mean (Madsen and Currey). From 1492 to the present, the tree rings show that persistent, severe droughts were far more prevalent in the distant past than in the 150 years of Euro-American presence in northern Utah (Bekker et al 2014). Variability in Salt Lake City precipitation since the 1960s, including severe drought in the 1960s and peak flooding in the 1980s, is tied to the Pacific Quasi-Decadal Oscillation, an 11 year cycle of drought and heavy precipitation tied to ocean temperatures off the coast of California and Japan. The level of the Great Salt Lake acts as a recorder of climate, and the Lake’s level has been recorded continuously since 1875 (USGS, 2017a, USGS, 2017b). In the summer of 2016, it dropped to a new historical low of 4,190.1 feet (id).

In 2010, Wang and colleagues at the Utah State University associated the Pacific Quasi-Decadal Oscillation (PQDO) with a northern Utah three-year leading precipitation and a six year leading level of the Great Salt Lake (Wang, Fig. 4 at 2166). In the association with the level of the Great Salt Lake, PQDO warm phase peaks are associated with the lowest lake levels and PQDO cool phase troughs are associated with the highest lake levels. In 2013, DeRose, Wang and colleagues used tree rings to reconstruct the level of the Great Salt Lake back to 1429, and they associated the lake’s level to the pacific oscillation back to 1700 (DeRose 2013). In recent years, the PQDO has been good for Utah. While California has suffered severe drought, the PQDO has kept annual precipitation relatively higher in Utah (IWWA Project).

The PQDO has not had a phase change since 1997 and the change to a heavy precipitation pattern is overdue. Despite heavy winter snowfall in the high mountains during the winter of 2016-2107, Utah remains in an extended drought with unseasonably warm summers.

Future uncertainty is added by the effect of global warming. Has global warming disrupted the Pacific Quasi-Decadal Oscillation? What will its future impact be? However, even excluding global warming, Salt Lake City and Utah are on a path towards relatively hotter weather and declining water supplies as compared to the past.

* * * *

On July 21st, 1942, the City banned the entire north bench of Salt Lake City to entry due to fire hazard, but access to City Creek Canyon would remain open (Salt Lake Telegram). On July 21st, 1906, the Deseret Evening News published a picture of a 10 foot snow bridge across City Creek Canyon about nine miles up the canyon. On July 21st, prize fighter Tommy Reilly trained by taking a long run up City Creek Canyon (Salt Lake Telegram). On July 21st, 1903, about 100 Ute Tribe members gathered for an annual celebration at the mouth of City Creek Canyon (Salt Lake Herald). (In the present, the Ute Tribe holds an annual meet at Liberty Park.)

July 16, 2017

July 15th

The Homeless and the Canyon

External Link to Image

Bluets on Bulrush in City Creek Canyon at Seep (Lat. 40.8014929, Long. -111.8749328). Author taken July 2017.

3:30 p.m. True summer heat near 100 degrees Fahrenheit returns and the canyon air takes on oven-like qualities of later in the season. While I was born in the cold of the northeast, part of my adolescence was spent under the blazing sun of southern California deserts. My now heated adapted summer body takes the high temperatures easily. The pulse slows; veins and arteries expand; blood flows and cools in hands and legs. Limbs become flexible; muscles relax; and toxins escape through open pores. The mind becomes lethargic and meditative, but with exercise in heat, thinking remains clear.

The heat has emptied the first mile of road, and only a few joggers are present. The road becomes as empty as in the opposite side of the temperature scale, that is in the depth of winter (December 27th). As in winter, I no longer recognize in myself the person who ran through five degree temperatures.

The heat also affects mammals and insects. Counter-intuitively, it makes Rock squirrels active, and I count three in the first mile. Insects begin to succumb. On the road’s surface, Grasshopper (Melanoplus sp.) lays dead, baking on the road, and that carcass is followed by a Giant western crane fly. Next, I find a spent Cabbage white butterfly. This allows me to examine one this usually hyperactive insect with my hand lens. As their name implies, the Cabbage whites are white in color, but close-up their abdomens are jet black. Numerous white hairs cover that segment and make the butterfly appear all-white.

The earth has dried out, and turns the rare cases of stationary surface water in the canyon into oases. The oasis at the seep about 100 yards below picnic site no. 6 (Lat. 40.8014929, Long. -111.8749328) has reached an idyllic peak of diversity. In an ellipsis of sixty by twenty feet, Circumpolar bluets rest on Bulrushes surrounded by Indian ricegrass and fronted by Kentucky bluegrass. These grasses surrounds a water rivulet in which Western Yellowjacket wasps and White Admiral butterflies stop and rest for a drink. Giant cattails are flanked on one side by six foot tall Horsemint (Agastache urticifolia (Benth.) Kuntze), a.k.a. Nettleleaf Giant Hyssop or Nettleleaf Giant Horsemint, covered in Cabbage white butterflies. On the other stands five foot tall blue Chicory. Stands of Starry solomon’s seal are backed by a large grove of Western poison ivy and are intermixed and are intermixed with Common California aster. A cultivar Weeping willow (Salix babylonica) shades the up-canyon end of the glade.

A short-distance downcanyon, three rare butterfly visitors are seen with orange wings, a black circumferential band and white wing spots. These are Mexican queen butterflies (Danaus gilippus strigosus), and they are usually restricted to New Mexico.

Up-canyon, this season’s teasels (Dipsacus sylvestris) have risen to four feet in height below the Red Bridge. For some weeks, the great two foot triangular leaves of the Burdock (Arctium minus Berhn) invasive weeds that line the canyon road have been raising two and three foot vertical stalks, but their purple flower heads have yet to open.

Today, I place three sponges in the lower canyon. The first is in the stream below the pond at picnic site 5. The second is in the seep 100 yards below picnic site 6, described above, and the third in at the watercress stand at the tunnel seep 50 yards below picnic site 6. I will retrieve these in a few days to see what mirco-life has become trapped or grown in the sponge’s cavities.

The intense Sun has boiled huge summer cumulus clouds from the reservoirs that line the eastern side of the Wasatch Front Mountain Range, and the clouds frame the north and eastern ridgelines of the canyon as I reach the Gate. Those reservoirs provide the valley with most of its drinking water. In the parking lot, an elderly gentleman, who each day leaves a homeless concentration zone at 500 West and 200 South in the City to seek the canyon’s cool breezes, sits on a bench eating a sandwich.

* * * *

The homeless have long had a relationship with City Creek Canyon. In addition to the homeless person who spends the day at a picnic parking lot, another homeless individual frequents the canyon during the winter, but spends cold nights in a local supermarket. Sometimes in the depths of winter, I have taken the homeless who come to the canyon with the intention of camping overnight back to the city and advise them that they have underestimated the sub-zero temperatures of canyon winter nights. Some are obviously mentally ill. They talk to themselves and their mental illness is either the result of the stress of becoming homeless or an effect of their pre-existing mental illness. For many years, there was a small homeless tent city near the parking lot gate off the Bonneville Shoreline Trail, but in recent years, the County and the City cleared the camp out. Now the watershed patrol vigorously patrols the canyon and takes any homeless citizens back to the concentration zone on the valley floor citing the fear that persons in a homeless camp might set the canyon’s grasslands on fire. While that is a legitimate concern, I suspect the City also quickly acts to remove any homeless from the canyon in part because middle-income citizens simply do not want the homeless there. They fear the homeless as potentially violent and secretly they fear becoming homeless themselves in an uncertain economy.

Salt Lake citizens struggle with the moral ambiguities created by their city’s homeless concentration zone. City residents have long resisted building sufficient facilities to house the homeless on the unsupported theory that building more beds will attract more homeless, and residents, like most other major United States cities, have long avoided building enough affordable housing. The City also struggles with the practice of surrounding communities and hospitals shipping their destitute and ill residents to into the City’s concentration zone. In the 1980s, Salt Lake City took the lead on homelessness by opening Utah’s first homeless shelters. Rather than expending monies addressing their own homeless problem by building their own shelters, for years, neighboring cities have shipped their destitute to the concentration zone citing that Salt Lake City was the only municipality with facilities to house them. Although the concentration zone has become a state and national embarrassment, city residents prefer to keep the homeless out-of-sight and away from other areas of the city, including out of the canyon.

The homeless’ relationship with the canyon goes back farther than this: the homeless built the canyon’s infrastructure. In the nineteenth and early twentieth century, the City dealt with its homelessness problem by shipping the destitute to the canyon. An early Utah statute permitted cities to impress the destitute and mentally ill convicted of the crime of vagrancy into road work gangs (Utah Code Ann. 10-8-85). In the early 1900s, when the City wanted to build a wider, graded road up City Creek Canyon to promote the new automobile tourism, it began systematic sweeps of the city, arresting the homeless for vagrancy as needed to supply laborer for building the canyon’s road (e.g., Salt Lake Herald, Sept. 26, 1910; Salt Lake Telegram, Nov. 11th, 1913). The city police were sophisticated in their sweeps. For example, in 1908, the road gang needed an experienced “dynamite man” to handle explosives used to break up rock ledges along the canyon road’s path. The Police Department did a sweep of vagrants seeking to arrest one with necessary skill (Deseret Evening News, April 24th, 1908). Unemployed miners got wind of the scheme and fled the city. A particularly racist cartoon, by modern standards, in the August 14th, 1904 Salt Lake Tribune shows who was working on road gangs and what residents’ attitudes were towards the poor. The gangs consisted of elderly unemployed men, persons with alcohol addiction, and minorities. On April 28th, 1908, Mark Aaron, a prisoner serving a 90 day sentence for vagrancy, was shot to death in the canyon will attempting to escape the road gang (Deseret Evening News). The officer claimed that he was aiming for Aaron’s legs, but missed and instead the bullet entered Aaron’s head. In 1972, the United States Supreme Court declared vagrancy laws unconstitutional.

This darker era in Salt Lake’s past provides some instruction for the City’s modern homeless problem. What the destitute need to restore their dignity is a roof over their heads and paying employment, even if that means government provided make work. If at night there are any ghosts wandering the canyon, they are probably of homeless men rattling their work gang chains.

* * * *

On July 15th, 2015, Mayor Ralph Becker proposes a “Connecting to Nature” plan in which $125 million USD bond would fund park renovations and new land acquisition (Deseret News). On July 15th, 1938, hard oil surfacing of the scenic drive along Bonneville Drive and 11th Avenue was nearly complete (Salt Lake Telegram). On July 17th, 1915, the U.S. Weather Bureau installed an advanced stream flow measuring gauge at the High Line Water Tanks in Pleasant Valley (Salt Lake Herald). On July 15th, 1891, the Red Bird Mine reports opening a four foot wide vein that may contain 1,000 ounces of silver (Salt Lake Times). Fifteen men are working at various prospects in City Creek Canyon (id).

July 13, 2017

July 13th – Revised

The Thoreauian Experience

4:00 p.m. In the near 100 Fahrenheit degree afternoon heat, at a seep along Bonneville Drive leading to the canyon, there is a thick stand of Common goldenrod. Its inflorescences have up to 30 small yellow flowers that each extrude 10 to 15 stamens. It is distinguished from roadside Missouri goldenrod by its serrated leaves (Pratt, Banner, and Bowns 2013). On one flower, a small 2 mm pink unidentified nymph solider beetle is grazing, and as I rotate the angle of the sunlight, its iridescence changes to lavender. Like yesterday, I again go for a short jog to milepost 1.0 and then back down the Pipeline Trail.

With summer’s heat and the proliferation of leaves, disease and opportunistic parasites arrive. In the first one-third mile, there are numerous Narrowleaf Rocky Mountain cottonwood saplings. One the saplings, something is attacking the leaves. At first glance, their leaves look like locust bean pods that have opened, but on closer inspection, some disease is forcing the leaves to fold back and grow four to five small bean-like pockets on each leaf. The newly grown pockets are open at the bottom. I pry several open, but find only one that has a small 1 mm fully-formed gnat inside. It is not clear whether this is some hatched larvae that forced the leaf to form the pockets or whether the gnat has simply crawled inside for protection. On the Pipeline Trail, a single Gambel’s oak leaf that has about ten small red-orange insect larvae attached to its underside. I mark this for a future check to see what develops.

There are only a few butterflies along the road, but at the seep Horsemint (Agastache urticifolia (Benth.) Kuntze), a.k.a. Nettleleaf Giant Hyssop or Nettleleaf Giant Horsemint with lavender inflorescences has matured. The small stand is covered with about 12 Cabbage white butterflies. In the heat, only a few people are on the quiet road and none are on the trail. I am restored.

As I jog through today’s canyon, I try to clear my mind of all thoughts and just experience the canyon’s nature. Although the benefits are commensurate, the amount of time that each day’s excursion takes is great, and this reduces my engagement with friends and a social life. Some see it as self-absorption, although I view it as centering. At a minimum, the practice of daily nature observation provides a restoration of mental attention and executive functions (April 24th and April 25th). From that renewed and centered emotional strength, a better understanding of the day’s political, social and economic events can be had, and only from a position of understanding can actions be formulated that will not make things worse for oneself or ones friends. But is a Thoreauian daily nature experience of nature just another form of modern narcissism?

Based on my experience visiting the canyon each day for almost a year, it is not. Close observation of nature is about sensitivity to and recognition of subtle biological relationships between plants, animals, geology and weather. That study is undertaken in the spirit of husbandry, since humans are the only beings on the planet with sufficient sentience to willfully modify the environment. There are few better metaphors for preparing oneself for a life moral well-being. It is a form of practice for being sensitive to and understanding human relationships. But its practice is only a sufficient condition to becoming a good person, and it is possible to study nature and biology for a lifetime while ignoring the lessons of interconnectedness that it provides.

* * * *

In dueling articles 2015, Pulitzer Prize winner Kathryn Schulz argued in The New Yorker Magazine that Thoreau did not deserve his literary fame: he was simply a self-absorbed narcissist (Schulz 2015). Essayist Jedediah Purdy responded the following day in The Altantic: Thoreau was engaged in the issue of his day – the abolition of slavery – and however awkward he was socially, he wrangling with moral issues remains an instructive today. Thoreau developed the stream in American thought that community injustice committed against some of its members is an injustice against all members of the community. Purdy notes that like Thoreau in the nineteenth century, life today involves moving in the alienating gray area “between feeling the justice and wrongs of our communities as our own and becoming insensate to them” (id). Thoreau’s method of thoughtful engagement, which grew out of his daily, careful observation of nature, is a good approach for daily life in our complex modern world.

That sense of alienation in a gray area of indecisiveness is magnified in modern culture by our cultural insistence that policy decisions should not be based on human values alone, and that experts should quantify and model issues to guide our selections (April 27th). Our ability to quantify and model reality has increased exponentially still the beginning of the digital industrial age in the 1980s, but this has the effect disempowering ordinary citizens (id). Many of the mathematical models that guide modern society, in particular in economics and commerce, are simply rough guides with little statistical validity, and although such modeling does provide a useful check on often-wrong intuition, they are not replacements for the human-valued centered decision-making of Theoreau’s century (id).

Our increased technological ability to collect enormous amounts of information and to model reality continues the dualism between Plato and Aristotle that set the structure of Western civilization two-thousand years ago. Plato was the ultimate deductionist: he felt that the characteristics of an underlying transcendent reality could be deduced and from inferior models of the everyday world. Artistole was the penultimate observationalist and inductive thinker: he felt that things in the everyday world were ends in and of themselves, and thus, observing and enumerating the infinite variations of natural objects was an end in and of itself. Our modern technological society are simply augmented versions of that duality and of Thoreau’s era. I can view mountains of information about the small 3 by 12 square mile canyon collected from sensors and quickly scan millions of research journals and academic books about its weather, wildlife and plants, but in the end, modern scientific research (and my amateur enjoyment of it) is Aristotelian observation followed by Platonic deduction and modeling. Again (see April 27th), the uncertainty generated by knowing the limits of one’s knowledge and careful decision-making supplemented by consideration of expert scientific opinion are important values, but at times, a Thoreauian sense of community alienation and indecisiveness must be set aside and directions chosen from human-centered values.

This tension between our increasing technological prowess and stifling emotional alienation were known to Thoreau. Norte Dame English professor Walls in the preface to her biography released on Thoreau’s 200th birthday (July 12th) argues that since Thoreau lived at the beginning of the Anthropocene era (April 27th), he was struggling with prospects of future environmental destruction, given the American character and that humanity had begun to modify the nature environment on a continental scale (Walls). Menard notes that early American divided their identity into two parts: a “British” identity that was associated with European industrialization and an “American” identity that was forged from their encounter in the new continent (Menard 2012, 600-602). In Thoreau’s famous essay Walking, he concluded that the American character had been shaped by the nature’s wildnesss. Thoreau argued in his famous statement that “Wildness is the preservation of the world”, that nature is a source of continuing replenishment. As America developed across the Mississippi and into the western United States, it needed to preserve undeveloped wilderness in order to maintain its vigor as a society:

“The West of which I speak is but another name for the Wild; and what I have been preparing to say is, that in Wildness is the preservation of the world. . . . The founders of every State which has risen to eminence have drawn their nourishment and vigor from a similar wild source” (Thoreau 1862, 665).

And societies that over-develop and destroy their wild places lose the ability to replenish their vigor and creativity. He attributes that loss to the end of the Roman Empire:

“It was because the children of the Empire were not suckled by the wolf [their destroyed wildlands] that they were conquered and displaced by the children of the Northern forests who were” (Thoreau 1862, 665).

In Walking, Thoreau predicts that if Americans do not preserve wilderness as they expanded into its western territory, e.g. – the Salt Lake valley in which City Creek Canyon is located, then the American character will degrade and decline into a mere “English” society (Menard, 605, 607-608):

“[Y]et we are so early weaned from her breast to society, to that culture which is exclusively an interaction of man on man, – a sort of breeding in and in, which produces at most a merely English nobility, a civilization destined to have a speedy limit” (Thoreau 1862, 670).

One-hundred years later and after considerable development of the West, Wallace Stegner in his Wilderness Letter echoed Thoreau’s reasoning. The American character was uniquely shaped by wilderness and to maintain that character, the residual of wild places left by 1960 must be preserved:

“I want to speak for the wilderness idea as something that has helped form our character and that has certainly shaped our history as a people. . . . Something will have gone out of us as a people if we ever let the remaining wilderness be destroyed; . . . We need wilderness preserved – as much of it as is still left, and as many kinds – because it was the challenge against which our character as a people was formed (Stegner 1960, and “wilderness was working on us”).

Thoreau also argued that daily exposure to natural places was necessary for the maintenance of mental health: “I think that I cannot preserve my health and spirits, unless I spend four hours a day at least – and it is commonly more than that – sauntering through the woods and over the hills and fields, absolutely free from all worldly engagements” (Thoreau 1862, 658). Regular exposure to nature was a condition to well-being: “Will not man grow to greater perfection intellectually as well as physically under these influences?” (id at 664).

Foreshadowing the development since the 1980s of biophilia and attention restoration therapy (April 19th to April 27th), 100 years later after Thoreau, Stegner also concludes that wild places are necessary for our emotional health in light of continuing hyper-development of Western lands:

“One means of sanity is to retain a hold on the natural world, to remain, insofar as we can, good animals. . . . . We simply need that wild country available to us, . . . . For it can be a means of reassuring ourselves of our sanity as creatures, a part of the geography of hope” (Stegner 1960).

The history of the early resource exploitation of City Creek’s Canyon and its subsequent preservation as a natural area parallels these tensions and contradictions (March 20th to April 3rd).

* * * *

On July 13th, 2007, a man was robbed by two women who drove him to City Creek. A second man, working with the women, came out of the bushes and robbed the man using a BB gun (Salt Lake Tribune, Deseret News, July 14, 2007). On July 13th, 1930, forty school girls hiked up City Creek to Rotary Park (Salt Lake Telegram ). On July 13th, 1912, a large fire was reported to have burned between City Creek and Dry Fork Canyons, and E. H. Clark, Wasatch Supervisor organized a canyon fire patrol (Salt Lake Tribune). On July 13, 1908, thousands of residents escaped high summer heat by going to resorts and to City Creek Canyon (Salt Lake Tribune). On July 13th, 1906, efforts to remove the last industrial facility in lower City Creek Canyon, a rock crusher owned by P.J. Moran, continue (Deseret Evening News).

Blog at